K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2019

Ta có: x^2+2y^2+z^2-2xy-2y-4z+5=0

<=> ( x^2 - 2xy + y^2 ) + ( y^2 - 2y +1 ) + ( z^2 - 4z + 4 ) = 0

<=> ( x - y )^2 + ( y - 1 )^2 + ( z - 2 )^2 = 0

=> x - y = 0 và y - 1 = 0 và z - 2 = 0

<=> x = y = 1 và z = 4

Nên P = 1

19 tháng 9 2015

bạn sẽ có: 2x^2/(1-x^2) - y = 0 => -2x^2/(x^2 -1) = y => 2x^2/(x^2 - 1) = - y. hay 2 + 2/(x^2 - 1) = -y(1). chứng minh tương tự bạn sẽ có 2y^2/(1-y^2)-z = 0 + => 2 + 2/(y^2-1) = -z(2) và 2z^2/(1-z^2) - x = 0 => 2 + 2/(z^2 -1) = - x(3).bạn đặt x^2 - 1 = a. y^2 - 1 = b. z^2 - 1 = c. => thế vào (1) (2) (3) bạn sẽ có:

2 + 2/b = -căn(c + 1)

2 + 2/a = - căn(b + 1)

2 + 2/c = - căn(a +1)

đặt căn (c+1) = m. căn (b +1) = n. căn (a + 1) = p thay vào hpt sẽ có:

2 + 2/b = -m

2 + 2/a = -n

2 +2/c = -p

giải hệ phương trình này ra bạn sẽ ra được a, b , c và từ đó bạn sẽ tìm ra được x ,y,z còn lại bạn tự làm nốt nhé. Tớ lười tính quá :|

25 tháng 4 2020

Bài 1 : 

Ta có : 

\(x^7+\frac{1}{x^7}=\left(x^3+\frac{1}{x^3}\right)\left(x^4+\frac{1}{x^4}\right)-\left(x+\frac{1}{x}\right)\)

\(\left(x+\frac{1}{x}\right)=a\Leftrightarrow\left(x+\frac{1}{x}\right)^2=a^2\)

\(\Leftrightarrow x^2+\frac{1}{x^2}+2.x.\frac{1}{x}=a^2\)

\(\Leftrightarrow x^2+\frac{1}{x^2}=a^2-2\)

\(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)\left(x^2-x.\frac{1}{x}+\frac{1}{x^2}\right)\)

               \(=a\left(x^2+\frac{1}{x^2}-1\right)=a\left(a^2-3\right)\)

\(x^4+\frac{1}{x^4}=\left(x^2+\frac{1}{x^2}\right)^2-2.x^2.\frac{1}{x^2}\)

                   \(=\left(a^2-2\right)^2-2=a^4-4a^2+4-2\)

                                                               \(=a^4-4a^2+2\)

\(\Rightarrow x^7+\frac{1}{x^7}=a.\left(a^2-3\right).\left(a^4-4a^2+2\right)-a\)

                      \(=\left(a^3-3a\right)\left(a^4-4a^2+2\right)-a\)

                         \(=a^7-4a^5+2a^3-3a^5+12a^3-6a-a\)

                          \(=a^7-7a^5+14a^3-7a\)

25 tháng 4 2020

Bài 2 : 

Ta có : 

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=2^2\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=4\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=\frac{2}{xy}-\frac{1}{z^2}\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{z^2}+\frac{2}{yz}+\frac{2}{zx}=0\)

\(\Rightarrow\left(\frac{1}{x^2}+\frac{2}{xz}+\frac{1}{z^2}\right)+\left(\frac{1}{y^2}+\frac{2}{yz}+\frac{1}{z^2}\right)=0\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2+\left(\frac{1}{y}+\frac{1}{z}\right)^2=0\)

\(\Rightarrow\frac{1}{x}+\frac{1}{z}=\frac{1}{y}+\frac{1}{z}=0\) vì \(\left(\frac{1}{x}+\frac{1}{z}\right)^2,\left(\frac{1}{y}+\frac{1}{z}\right)^2\ge0\)

\(\Rightarrow x=y=-z\)

\(\Rightarrow\frac{1}{-z}+\frac{1}{-z}+\frac{1}{z}=2\Rightarrow-\frac{1}{z}=2\Rightarrow z=-\frac{1}{2}\)

\(\Rightarrow x=y=\frac{1}{2}\)

\(\Rightarrow x+2y+z=\frac{1}{2}+2.\frac{1}{2}-\frac{1}{2}=1\)

\(\Rightarrow P=1\)

(x+y+z)^2=x^2+y^2+z^2

=>2(xy+yz+xz)=0

=>xy+xz+yz=0

=>xy/xyz+xz/xyz+yz/xyz=0

=>1/x+1/y+1/z=0

3 tháng 8 2023

Có VT = \(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-\dfrac{2}{xy}-\dfrac{2}{yz}-\dfrac{2}{zx}}\)

\(=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-\dfrac{2}{xyz}\left(x+y+z\right)}\) 

\(=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|=VP\) (Vì x + y + z = 0)