17/31 - 7/62 * - 31 / 54
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5, 31+1240++1829=3100
6. -19+836+1829=2646
7. 54.43-32.35=2322-1120=1202
8 2018(31+16+50)=2018.97=195746
9. 16(34-21+55)=16.68=1088
10. 63(29-31-98)=63.(-100)=-6300
Bài 2:
\(A=\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+...+\dfrac{3}{17\cdot20}\)
\(=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{17}-\dfrac{1}{20}\)
\(=\dfrac{1}{2}-\dfrac{1}{20}=\dfrac{9}{20}\)
\(B=\dfrac{5^2}{1\cdot6}+\dfrac{5^2}{6\cdot11}+...+\dfrac{5^2}{26\cdot31}\)
\(=5\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{26\cdot31}\right)\)
\(=5\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{26}-\dfrac{1}{31}\right)\)
\(=5\left(1-\dfrac{1}{31}\right)=5\cdot\dfrac{30}{31}=\dfrac{150}{31}\)
\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=4.\left(3+3^3+...+3^{2009}\right)\)
⇒ \(B\) ⋮ 4
b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)
x+(-45)=(-62)+17
x+(-45)=-45
x =-45+45
x =0
(689-31)-(269-111)
=689-31-269+111
=(689+111)-(31+269)
= 800 - 300
= 500
=\(\dfrac{11}{31}\)*\(\left(\dfrac{-2}{17}-\dfrac{-9}{17}\right)\)+\(\dfrac{7}{31}\)*\(\dfrac{-20}{17}\)
=\(\dfrac{11}{31}\)*\(\dfrac{-7}{17}\)+\(\dfrac{7}{31}\)*\(\dfrac{-20}{17}\)
=\(\dfrac{-77}{512}\)+\(\dfrac{-140}{512}\)
=\(\dfrac{-217}{512}\)
Sắp xếp theo thứ tự tăng dần là :
a) 11 phần 72 ; 7 phần 18 ; 102 phần 72
b) 31 phần 49 ; 67 phần 97 ; 93 phần 140
2053/3348
2053/3348