Cho \(\frac{a}{b}=\frac{c}{d}\) . Chứng minh rằng : \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
Xét: \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\)
\(\Leftrightarrow a-\frac{ab^2}{a^2+b^2}+b-\frac{bc^2}{b^2+c^2}+c-\frac{cd^2}{c^2+d^2}+d-\frac{da^2}{d^2+a^2}\)
Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm
\(\Rightarrow\left\{\begin{matrix}a^2+b^2\ge2\sqrt{a^2b^2}=2ab\\b^2+c^2\ge2\sqrt{b^2c^2}=2bc\\c^2+d^2\ge2\sqrt{c^2d^2}=2cd\\d^2+a^2\ge2\sqrt{d^2a^2}=2da\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}\frac{ab^2}{a^2+b^2}\le\frac{ab^2}{2ab}=\frac{b}{2}\\\frac{bc^2}{b^2+c^2}\le\frac{bc^2}{2bc}=\frac{c}{2}\\\frac{cd^2}{c^2+d^2}\le\frac{cd^2}{2cd}=\frac{d}{2}\\\frac{da^2}{d^2+a^2}\le\frac{da^2}{2da}=\frac{a}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}a-\frac{ab^2}{a^2+b^2}\ge a-\frac{b}{2}\\b-\frac{bc^2}{b^2+c^2}\ge b-\frac{c}{2}\\c-\frac{cd^2}{c^2+d^2}\ge c-\frac{d}{2}\\d-\frac{da^2}{d^2+a^2}\ge d-\frac{a}{2}\end{matrix}\right.\)
\(\Rightarrow a-\frac{ab^2}{a^2+b^2}+b-\frac{bc^2}{b^2+c^2}+c-\frac{cd^2}{c^2+d^2}+d-\frac{da^2}{d^2+a^2}\ge a+b+c+d-\frac{a}{2}-\frac{b}{2}-\frac{c}{2}-\frac{d}{2}\)
\(\Rightarrow a-\frac{ab^2}{a^2+b^2}+b-\frac{bc^2}{b^2+c^2}+c-\frac{cd^2}{c^2+d^2}+d-\frac{da^2}{d^2+a^2}\ge\frac{a+b+c+d}{2}\)
\(\Leftrightarrow\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\ge\frac{a+b+c+d}{2}\) ( đpcm )
Cách của bạn Minh dài quá mình xin làm cách ngắn hơn:
Đầu tiên ta chứng minh bổ đề:
\(\frac{x^3}{x^2+y^2}\ge\frac{2x-y}{2}\)
\(\Leftrightarrow2x^3-\left(x^2+y^2\right)\left(2x-y\right)\ge0\)
\(\Leftrightarrow y\left(y-x\right)^2\ge0\)(đúng)
Từ đó ta có: \(\left\{\begin{matrix}\frac{a^3}{a^2+b^2}\ge\frac{2a-b}{2}\\\frac{b^3}{b^2+c^2}\ge\frac{2b-c}{2}\\\frac{c^3}{c^2+d^2}\ge\frac{2c-d}{2}\\\frac{d^3}{d^2+a^2}\ge\frac{2d-a}{2}\end{matrix}\right.\)
Cộng 4 cái trên vế theo vế ta được
\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\ge\frac{2a-b}{2}+\frac{2b-c}{2}+\frac{2c-d}{2}+\frac{2d-a}{2}=\frac{a+b+c+d}{2}\)
bài 1. ta có
\(a^2+b^2+c^2+d^2\ge ab+ac+ad\)
\(\Leftrightarrow b^2+ab+\frac{a^2}{4}+c^2+ac+\frac{a^2}{4}+d^2+ad+\frac{a^2}{4}+\frac{a^2}{4}\ge0\)
\(\Leftrightarrow\left(b+\frac{a}{2}\right)^2+\left(c+\frac{a}{2}\right)^2+\left(d+\frac{a}{2}\right)^2+\frac{a^2}{4}\ge0\) luôn đúng
Bài 2
ta có \(\frac{a^5}{b^5}+1+1+1+1\ge\frac{5.a}{b}\) (bất đẳng thức cauchy)
Tương tự ta có \(\frac{b^5}{c^5}+4\ge\frac{5b}{c};\frac{c^5}{a^5}+4\ge\frac{5c}{a}\)
\(\Rightarrow\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge5\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-12\)
Mà dễ dàng chứng minh \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\)
Nên ta có \(\Rightarrow\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge5\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-12\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
bài 1 : \(^{a^2+B^2+C^2+D^2}\)>hoặc =ab+ac+ad
\(^{a^2+b^2+c^2}\)- ab-ac-ad>hoặc = 0
\((\frac{1}{4}^{a^2-ab+b^2})+(\frac{1}{4}^{a^2-ac+c^2})+(\frac{1}{4}^{a^2-ad+d^2})\)>hoặc =0
\((\frac{1}{2}a-b)^2+(\frac{1}{2}a-c)^2+(\frac{1}{2}a-d)^2>=0\)
Vì \((\frac{1}{2}a-b)^2>=0\)với mọi \(A,b\varepsilon n\)
=> đpcm tự kết luận
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{ab}{cd}\left(đpcm\right)\)
\(\frac{a}{b}\) =\(\frac{c}{d}\) =>\(\frac{a}{c}\) =\(\frac{b}{d}\) =\(\frac{a-b}{c-d}\) =>\(\frac{ab}{cd}\) = \(\frac{a}{c}\) x\(\frac{b}{d}\) = \(\frac{a-b}{c-d}\) x \(\frac{a-b}{c-d}\) = \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Còn với\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\) thì bạn chỉ cần thay dấu trừ thành dấu công là được
Chúc bạn học tốt