K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 3 2019

Biến đổi tương đương thôi:

\(\frac{x^2+y^2+z^2}{3}\ge\left(\frac{x+y+z}{3}\right)^2\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Leftrightarrow3x^2+3y^2+3z^2\ge x^2+y^2+z^2+2xy+2xz+2yz\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2xz-2yz\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\ge0\) (luôn đúng)

Vậy BĐT ban đầu đúng, dấu "=" xảy ra khi \(x=y=z\)

27 tháng 10 2018

Đáp án D

29 tháng 4 2019

cảm ơn bạn nhiều

26 tháng 12 2016

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) ta có:

\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\)

\(\ge\frac{9}{x+y+y+z+x+z}=\frac{9}{2\left(x+y+z\right)}\)

Dấu "=" xảy ra khi \(x=y=z\)

30 tháng 12 2017

Đề phải cho x,y,z ; a,b,c >0 chứ bạn ơi

Xét A = (a^2/x + b^2/y + c^2/z) . (x+y+z) = [(a/\(\sqrt{x}\))^2+(b/\(\sqrt{y}\))^2+(c/\(\sqrt{z}\))^2 . (\(\sqrt{x}\)2 + \(\sqrt{y}\)2 + \(\sqrt{z}\)2)

Áp dụng bđt bunhiacopxki ta có : 

A >= (a/\(\sqrt{x}\).\(\sqrt{x}\)+b/\(\sqrt{y}\).\(\sqrt{y}\)+c/\(\sqrt{z}\).\(\sqrt{z}\))^2 = (a+b+c)^2

=> a^2/x + b^2/y + c^2/z >= (a+b+c)^2/x+y+z

=> ĐPCM

k mk nha

30 tháng 12 2017

Nhầm chỗ \(\sqrt{z}\)2 nha . đó là \(\sqrt{z}\)2

k mk nha

11 tháng 8 2017

Hằng đẳng thức ???

Áp dụng BĐT \(x^2+y^2\ge2xy\) ta có:

\(\frac{x^4+y^4}{2}\ge\frac{\left(x^2\right)^2+\left(y^2\right)^2}{2}\ge\frac{2x^2y^2}{2}=x^2y^2\)

Tương tự cho 2 BĐT còn lại cũng có;

\(\frac{y^4+z^4}{2}\ge y^2z^2;\frac{z^4+x^4}{2}\ge x^2z^2\)

Cộng theo vế 3 BĐT trên ta có:

\(VT=\frac{x^4+y^4}{2}+\frac{y^4+z^4}{2}+\frac{z^4+x^4}{2}\ge x^2y^2+y^2z^2+z^2x^2=VP\)

Khi \(x=y=z\)

11 tháng 8 2017

Áp dụng bđt Cô si cho 2 số không âm, ta có:

\(\hept{\begin{cases}\frac{x^4+y^4}{2}\ge\sqrt{x^4y^4}=x^2y^2\\\frac{y^4+z^4}{2}\ge\sqrt{y^4z^4}=y^2z^2\\\frac{z^4+x^4}{2}\ge\sqrt{z^4x^4}=z^2x^2\end{cases}}\)

\(\Rightarrow\frac{x^4+y^4}{2}+\frac{y^4+z^4}{2}+\frac{z^4+x^4}{2}\ge x^2y^2+y^2z^2+z^2x^2\)

23 tháng 10 2021

\(BĐT\Leftrightarrow\left(\dfrac{x}{y+z}+1\right)+\left(\dfrac{y}{x+z}+1\right)+\left(\dfrac{z}{x+y}+1\right)\ge\dfrac{3}{2}+3=\dfrac{9}{2}\\ \Leftrightarrow\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\ge9\left(1\right)\)

Áp dụng BĐT Cauchy:

\(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\ge3\sqrt[3]{\dfrac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

Nhân vế theo vế 2 BĐT ta được

\(\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\ge3\cdot3\sqrt[3]{1}=9\)

Do đó \(\left(1\right)\) luôn đúng

Vậy ta được đpcm

23 tháng 10 2021

Phải có thêm dữ kiện x,y,z > 0 nữa nhé.

Áp dụng BĐT C - S dạng Engel, ta có:

Cycma(x/(y + z)) = cycma(x^2/(xy + xz)) >= cycma(x)^2/(2cycma(xy)) >= cycma(x)^2/((2cycma(x)^2)/3) = 3/2 (đpcm)

21 tháng 10 2016

thôi xài Holder 

\(\Rightarrow9\left(x^3+y^3+z^3\right)\ge\left(x+y+z\right)^3\)

\(\Rightarrow\frac{x^3+y^3+z^3}{3}\ge\frac{\left(x+y+z\right)^3}{27}=\left(\frac{x+y+z}{3}\right)^3\)

->Đpcm

Dấu = khi x=y=z

20 tháng 10 2016

chắc áp dụng bđt bernouli