Tìm x, biết:
\(\left|x^2-2x\right|=x^2-2x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)TH1: \(2x-3>0;3x+2>0\)
\(=>2x-3-3x-2=0\\ =>-x-5=0\\ =>-x=5=>x=-5\)
TH2: \(2x-3< 0;3x+2< 0\)
\(=>-2x+3+3x+2=0\\ =>x+5=0\\ =>x=-5\)
Cả 2 TH ra \(x=-5=>x=-5\)
b)TH1 \(\dfrac{1}{2}x>0\)
\(=>\dfrac{1}{2}x=3-2x\\ =>3-2x-\dfrac{1}{2}x=0\\ =>\dfrac{4}{2}x-\dfrac{1}{2}x=3\\ =>\dfrac{3}{2}x=3\\ =>x=2\)
TH2 \(\dfrac{1}{2}x< 0\)
\(=>-\dfrac{1}{2}x=3-2x\\ =>3-2x+\dfrac{1}{2}x=0\\ =>\dfrac{4}{2}x+\dfrac{1}{2}x=3\\ =>\dfrac{5}{2}x=3\\ =>x=\dfrac{6}{5}\)
\(=>x=2;\dfrac{6}{5}\)
1: \(\Leftrightarrow2x^2-10x-3x-2x^2=0\)
=>-13x=0
=>x=0
2: \(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
=>3x=13
=>x=13/3
3: \(\Leftrightarrow4x^4-6x^3-4x^3+6x^3-2x^2=0\)
=>-2x^2=0
=>x=0
4: \(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
=>-8x=6-14=-8
=>x=1
`1)2x(x-5)-(3x+2x^2)=0`
`<=>2x^2-10x-3x-2x^2=0`
`<=>-13x=0`
`<=>x=0`
___________________________________________________
`2)x(5-2x)+2x(x-1)=13`
`<=>5x-2x^2+2x^2-2x=13`
`<=>3x=13<=>x=13/3`
___________________________________________________
`3)2x^3(2x-3)-x^2(4x^2-6x+2)=0`
`<=>4x^4-6x^3-4x^4+6x^3-2x^2=0`
`<=>x=0`
___________________________________________________
`4)5x(x-1)-(x+2)(5x-7)=0`
`<=>5x^2-5x-5x^2+7x-10x+14=0`
`<=>-8x=-14`
`<=>x=7/4`
___________________________________________________
`5)6x^2-(2x-3)(3x+2)=1`
`<=>6x^2-6x^2-4x+9x+6=1`
`<=>5x=-5<=>x=-1`
___________________________________________________
`6)2x(1-x)+5=9-2x^2`
`<=>2x-2x^2+5=9-2x^2`
`<=>2x=4<=>x=2`
mọi người ơi câu b là giá trị tuyệt đối của x^2 -1 nha
giúp mình mình tick cho
a) \(\Leftrightarrow x^2+\dfrac{2}{3}x-x^2+\dfrac{3}{4}x=\dfrac{7}{12}\)
\(\Leftrightarrow\dfrac{17}{12}x=\dfrac{7}{12}\Leftrightarrow x=\dfrac{7}{17}\)
c) \(\Leftrightarrow\left[{}\begin{matrix}2x+1=-1\\2x+1=1\\2x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
\(2x^2-2x=\left(x-1\right)^2\)
\(\Rightarrow2x\left(x-1\right)-\left(x-1\right)^2=0\)
\(\Rightarrow\left(x-1\right)\left(2x-x+1\right)=0\Rightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
\(2x^2-2x=\left(x-1\right)^2\)
\(2x\left(x-1\right)=\left(x-1\right)^2\)
\(2x\left(x-1\right)-\left(x-1\right)^2=0\)
\(\left(x-1\right)\left(2x-x+1\right)=0\)
\(\left(x-1\right)\left(x+1\right)=0\)
⇔\(\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
\(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)
\(\Leftrightarrow2x\left[\left(x+2\right)^2-4x\right]=2\left(x^3-8\right)\)
\(\Leftrightarrow2x\left(x^2+4x+4-4x\right)=2x^3-16\)
\(\Leftrightarrow2x\left(x^2-4\right)=2x^3-16\)
\(\Leftrightarrow2x^3-8x=2x^3-16\)
\(\Leftrightarrow-8x=-16\)
\(\Leftrightarrow x=2\)
Mình k 3 k cho bạn rồi, nhưng bạn giải rõ ra cho mình được không? Đây là bài tập hè lớp 6 nhưng mình cảm giác giống bài lớp 8.
\(x\left(3x+2\right)+\left(x+1\right)^2-\left(2x-5\right)\left(2x+5\right)=-12\)
\(3x^2+2x+x^2+2x+1-4x^2+25=-12\)
\(4x+26=-12\)
\(4x=-38\)
\(x=\frac{-19}{2}\)
x(3x+2) + (x+1)2 - (2x-5)(2x+5)= -12
(3x2+2x) + (x2+2x+1) - (4x2 - 25) = -12
3x2 + 2x + x2 + 2x + 1 - 4x2 +25 = -12
(3x2 + x2 - 4x2) + ( 2x+2x) + (1+25) = -12
0 + 4x + 26 = -12
4x = -12 - 26
4x = -38
x = -9.5
a) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)
\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x+25=15\)
\(\Leftrightarrow24x=-10\)
hay \(x=-\dfrac{5}{12}\)
b) Ta có: \(2x^3-50x=0\)
\(\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
c) Ta có: \(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)
\(\Leftrightarrow x^2+8x-9=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=1\end{matrix}\right.\)
d) Ta có: \(x^3-x=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
e) Ta có: \(27x^3-27x^2+9x-1=1\)
\(\Leftrightarrow\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2-1^3=1\)
\(\Leftrightarrow\left(3x-1\right)^3=1\)
\(\Leftrightarrow3x-1=1\)
\(\Leftrightarrow3x=2\)
hay \(x=\dfrac{2}{3}\)