A=-7/102005+-15/102006,B=-15/102005+-7/102006(So sánh A và B ko quy đồng)
Mong các bạn giúp mình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
A=102004+1/102005+1
10A=102005+10/102005+1
10A=102005+1+9/102005+1
10A=1+9/102005+1
Tương tự:
B=102005+1/102006+1
10B=1+9/102006+1
Vì 9/102005+1>9/102006+1 nên 10A>10B
⇒A>B
Chúc bạn học tốt!
Ta có: \(10\cdot A=\dfrac{10^{2005}+10}{10^{2005}+1}=1+\dfrac{9}{10^{2005}+1}\)
\(10B=\dfrac{10^{2006}+10}{10^{2006}+1}=1+\dfrac{9}{10^{2006}+1}\)
mà \(\dfrac{9}{10^{2005}+1}>\dfrac{9}{10^{2006}+1}\)
nên 10A>10B
hay A>B
\(10A=10.\dfrac{10^{2004}+1}{10^{2005}+1}=\dfrac{10^{2005}+10}{10^{2005}+1}=1+\dfrac{9}{10^{2005}+1}\\ 10B=10.\dfrac{10^{2005}+1}{10^{2006}+1}=\dfrac{10^{2006}+10}{10^{2006}+1}=1+\dfrac{9}{10^{2006}+1}\)
vì \(\dfrac{9}{10^{2005}+1}>\dfrac{9}{10^{2006}+1}\Rightarrow10A>10B\Rightarrow A>B\)
Chào bạn, bạn hãy theo dõi câu trả lời của mình nhé!
a) Ta có :
\(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{151}=3^{150}\cdot3=\left(3^2\right)^{75}\cdot3=9^{75}\cdot3\)
Mà \(9^{75}>8^{75}=>9^{75}\cdot3>8^{75}=>3^{151}>2^{225}\)
b) Nhân cả vế A lẫn vế B với 102005, ta có :
\(10^{2005}A=-7+\frac{-15}{10}=\frac{-70}{10}+\frac{-15}{10}=\frac{-85}{10}\)
\(10^{2005}B=-15+\frac{-7}{10}=\frac{-150}{10}+\frac{-7}{10}=\frac{-157}{10}\)
Mà \(\frac{-85}{10}>\frac{-157}{10}=>10^{2005}A>10^{2005}B\)
\(=>A>B\)
Chúc bạn học tốt!
Xét A ta có
A=\(\frac{-7}{10^{2005}}\) + \(\frac{-15}{10^{2006}}\)
A=\(\frac{-7}{10^{2005}}\) +\(\frac{-8}{10^{2006}}\) +\(\frac{-7}{10^{2006}}\)
Xét B ta có
B=\(\frac{-15}{10^{2005}}\) +\(\frac{-7}{10^{2006}}\)
B=\(\frac{-8}{10^{2005}}\) + \(\frac{-7}{10^{2005}}\) +\(\frac{-7}{10^{2006}}\)
Vì \(\frac{-8}{10^{2006}}\) >\(\frac{-8}{10^{2005}}\) nên A>B
=>A=\(\frac{-7}{10^{2005}}\)+\(\frac{-7}{10^{2006}}\)+\(\frac{-8}{10^{2006}}\)
B=\(\frac{-7}{10^{2005}}\)+\(\frac{-8}{10^{2005}}\)+\(\frac{-7}{10^{2006}}\)
=>ta so sánh \(\frac{-8}{10^{2006}}\) và\(\frac{-8}{10^{2005}}\)ta thấy\(\frac{-8}{10^{2006}}\)<\(\frac{-8}{10^{2005}}\)
=>A<B
a) \(\dfrac{8}{9}< 1;\dfrac{13}{7}>1\Rightarrow\dfrac{8}{9}< \dfrac{13}{7}\)
b) \(\dfrac{16}{27}>\dfrac{15}{27}>\dfrac{15}{29}\Rightarrow\dfrac{16}{27}>\dfrac{15}{29}\)
\(A=\frac{-7}{10^{2005}}+\frac{-15}{10^{2006}}\)
\(=\frac{-7}{10^{2005}}+\frac{-7}{10^{2006}}+\frac{-8}{10^{2006}}\)
\(B=\frac{-15}{10^{2005}}+\frac{-7}{10^{2006}}\)
\(=\frac{-7}{10^{2005}}+\frac{-8}{10^{2005}}+\frac{-7}{10^{2006}}\)
Ta thấy: A và B đều có chung 2 hạng tử: \(\frac{-7}{10^{2006}};\frac{-7}{10^{2005}}\)
=> Muốn so sánh A và B thì ta so sánh: \(\frac{-8}{10^{2006}}\)và \(\frac{-8}{10^{2005}}\)
Mà \(\frac{-8}{10^{2006}}>\frac{-8}{10^{2005}}\)
=> A > B