\(8\le2^{m-n}< 2^9\times2^{-5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)
\(\Rightarrow2^n\cdot\left(2^{-1}+4\right)=9\cdot2^5\)
\(\Rightarrow2^n\cdot4,5=288\)
\(\Rightarrow2^n=64\)
\(\Rightarrow n=6\)
b) \(2^m-2^n=1984\)
\(\Rightarrow2^n\cdot\left(2^{m-n}-1\right)=2^6\cdot31\)
\(\Rightarrow\left\{{}\begin{matrix}2^n=2^6\\2^{m-n}-1=31\end{matrix}\right.\)
\(\Rightarrow n=6\)
\(\Rightarrow2^{m-n}=32\Rightarrow m-n=5\Rightarrow m=11\)
a) 81 = (-243)( - 3n)
33 = 35.3n
32.3n = 1
n =2 vì 32-2 = 3o = 1
b) 2n (1/2 +4) = 9.25
2n.9/2 = 9.25
2n = 26
n = 6
\(C=\dfrac{5\times2^{12}\times3^8-3^9\times2^{12}}{2^2\times2^{13}\times3^8+2\times2^{12}\times\left(-3^9\right)}=\dfrac{3^8\times2^{12}\times\left(5-3\right)}{2^{15}\times3^8+2^{13}\times\left(-3\right)^9}\)
\(=\dfrac{3^8\times2^{12}\times2}{2^{13}\times3^8\times\left(4-3\right)}=\dfrac{1}{1}=1\)
\(#PaooNqoccc\)
a) \(3\times\dfrac{4}{11}=\dfrac{3\times4}{11}=\dfrac{12}{11}\)
b) \(1\times\dfrac{5}{4}=\dfrac{1\times5}{4}=\dfrac{5}{4}\)
c) \(0\times\dfrac{2}{5}=\dfrac{0\times2}{5}=\dfrac{0}{5}=0\)
a: \(=\dfrac{3\cdot4}{11}=\dfrac{12}{11}\)
b: \(=\dfrac{1\cdot5}{4}=\dfrac{5}{4}\)
c: \(=\dfrac{0\cdot2}{5}=0\)
\(E=\frac{4^9.9^5+6^9.2^6}{2^{10}.3^8+6^8.20}=\frac{\left(2^2\right)^9.\left(3^2\right)^5+6^9.64}{2^{10}.3^8+6^8.20}=\frac{2^{18}.3^{10}+6^9.64}{2^{10}.3^8+6^8.20}=\frac{2^8.3^2+6.2^4}{1.1+1.5}=\frac{2304+96}{6}=\frac{2400}{6}=400\)
\(E=\dfrac{11.3^{29}-3^{2^{15}}}{2.3^{14}.2.3^{14}}\)
\(=\dfrac{11.3-3^{30}}{2^2}=\dfrac{33-3^{30}}{4}\)
2^3<=2^m-n<2^4
=>2^m-n=2^3
=>m-n=3
........