K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2021

Xét tam giác ABC có:

F là trung điểm AB(gt)

E là trung điểm AC(gt)

=> EF là đường trung bình

=> EF//BC và \(EF=\dfrac{1}{2}BC\)

Mà D thuộc BC và \(BD=\dfrac{1}{2}BC\)(D là trung điểm BC)

=> EF//BD và EF=BD

=> ABDF là hình bình hành

29 tháng 11 2021

a, Trong △ABC có:

là trung điểm của BCE là trung điểm của AC.

⇒ DE là đường trung bình của △ABC.

⇒ DE = 1/2AB (1)

và: DE // AB (2)

Từ (1) suy ra: DE = 1/2 . 6 = 3.

b, Ta có: F là điểm đối xứng với D qua E nên:

DE = DF

⇒ DF = 2DE = 2 . 1/2AB = AB (3) (theo (1)

Từ (2),(3) suy ra: ABDF là hình bình hành.

c, Do ABDF là hình bình hành nên:

AF // BD (4) và: AF = BD

Mặt khác, ta có: là trung điểm của BC

=> BD = BC. Mà: AF = BD (cmt)

=> BC = AF (5).

Từ (4) và (5) suy ra: Tứ giác ADCF là hình bình hành.

Ta lại có: AB⊥AC (góc A = 90o)

và: AB // DF

⇒ AC⊥DF.

Vậy, hình bình hành ADCF có hai đường chéo vuông góc hay:

ADCF là hình thoi.

Ta có: ADCF là hình thoi ⇒AE = 1/2AC = 4.

Xét △ADE có: góc E = 90 (AC⊥DF)

⇒ AE+ DE= AD2 (Định lý Pythagore)

thay số: 4+ 32 = AD2

16 + 9 = AD2

25 = AD=> AD = 5 cm.

d, Để ADCF là hình vuông thì: AD⊥BC.

Mà: DC = DB = 1/2BC (gt) nên:

AD⊥BC khi và chỉ khi AD là đường trung trực của BC hay:

AB = AC

=> △ABC vuông cân tại A.

Vậy, điều kiện để ADCF là hình vuông là △ABC vuông cân tại A

a: Xét ΔABC có 

D là trung điểm của BC

F là trung điểm của AC

Do đó: DF là đường trung bình của ΔABC

Suy ra: DF//AB

hay ABDF là hình thang

b: Xét ΔABC có 

F là trung điểm của AB

E là trung điểm của AC
Do đó: FE là đường trung bình của ΔABC

Suy ra: FE//BD và FE=BD

hay BDEF là hình bình hành

15 tháng 10 2021

a: Xét ΔABC có

E là trung điểm của AB

D là trung điểm của AC

Do đó: ED là đường trung bình của ΔABC

Suy ra: ED//BF và ED=BF

hay BEDF là hình bình hành

21 tháng 10 2021

Còn phần b, c thì sao ạ

 

14 tháng 11 2021

\(\left\{{}\begin{matrix}\text{E là trung điểm AB}\\\text{D là trung điểm AC}\end{matrix}\right.\)

mà AB=AC ( tam giác ABC cân tại A)

⇒ AE=BE=AD=DC

\(\left\{{}\begin{matrix}\text{D là trung điểm AC}\\\text{F là trung điểm BC}\end{matrix}\right.\)

⇒ DF là đường trung bình tam giác ABC đáy AB

⇒ DF//AB mà DF=AE

⇒ AEFD là hình bình hành (1)

Vì BEDF là hình bình hành 

⇒ BE=DF mà BE=AD

⇒ AD=DF (2)

Từ (1) và (2) 

⇒ ADFE là hình thoi

14 tháng 11 2021

Vì BEDF là hình bình hành (gt)

=> BE // DF , BE = DF

mà BE = AE (E là trung điểm AB)

=> AE = DF

Xét tứ giác ADFE có : AE = FD (cmt)

                                    AE // FD (BE // FD mà E ∈ AB)

=> Tứ giác ADFE là hình bình hành

Vì tam giác ABC cân tại A có F là trung điểm BC

=> AF là đường cao của tam giác ABC

=> AF ⊥ BC (1)

Vì tứ giác BCDE là hình thang (gt)

=> BC // DE (2)

Từ (1) và (2) => AF ⊥ ED (từ vuông góc đến song song) 

Xét hình bình hành ADFE có : AF ⊥ ED mà AF và ED là 2 đường chéo

=> hình bình hành ADFE là hình thoi (DHNB)