K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2021

a) Xét tam giác DEG có:

M là trung điểm DE(gt)

MN//DG(gt)

=> N là trung điểm EG

b) Xét tam giác DEG có:

M là trung điểm DE(gt)

N là trung điểm EG(cmt)

=> MN là đường trung bình

\(\Rightarrow DG=2MN=2.5=10\left(cm\right)\)

a: Xét ΔDEG có 

H là trung điểm của EG

HK//DG

Do đó: K là trung điểm của DE

Xét ΔDEG có 

H là trung điểm của EG

K là trung điểm của DE

Do đó: HK là đường trung bình của ΔDEG

 

14 tháng 6 2020

tự kẻ hình nghen:33333

a) vì AD cắt BE tại G mà AD, BE là hai đường trung tuyến=> G là trọng tâm của tam giác ABC

=> EG=1/3BE, BG=2/3BE

=> GD=1/3AD, AG=2/3AD

=> EG+EN=2*1/3BE (GE=EN)=> GN=2/3BE=> GN=BG=2/3BE

=> GD+DM=2*1/3AD (GD=DM)=> GM=2/3AD=> GM=AG=2/3AD

b) xét tam giác AGB và tam giác MGN có

GN=BG(cmt)

GM=AG(cmt)

AGB=MGN( đối đỉnh)

tam giác AGB=tam giác MGN (cgc)

MN=AB( hai cạnh tương ứng)

=> BAG=GMN( hai góc tương ứng)

mà BAG so le trong với GMN=> AB//MN

10 tháng 4 2020

lê anh tú ăn cứt

3 tháng 3 2021

Vô văn hóa

8 tháng 7 2023

loading...

Gọi độ dài cạnh EH là \(x\)  (cm);  0 < \(x< 5\)

Độ dài cạnh HG là: 5 - \(x\) (cm)

Xét tam giác vuông HDE vuông tại H, theo pytago ta có:

DH2 = 32 - \(x^2\)  = 9 - \(x^2\)(1)

Xét tam giác vuông DHG vuông tại H theo pytago ta có:

DH2 = 42 - (5 - \(x\))2  = -\(x^2\) + 10\(x\) - 9(2)

Từ (1) và (2) ta có: 

-\(x^2\) + 10\(x\) - 9 = 9 - \(x^2\)

         10\(x\) = 18

          \(x\) = 1,8 (thỏa mãn)

Thay \(x\) = 1,8 vào biểu thức (1) ta có:

DH2 =  9 - (1,8)2 = 5,76

DH = \(\sqrt{5,76}\) = 2,4 (cm)

Kết luận: độ dài đoạn DH là 2,4 cm 

 

         

 

 

 

 

 

 

Kham khảo nha , tớ ko chắc về cái CM : AK = CG =BI của mk 

a,Xét \(\Delta\)AEK và \(\Delta\) CEG có:

EA=EC(gt)

EG=EK(gt)

^AEK = ^GEC( 2 góc đối đỉnh)

=> \(\Delta\)AEK = \(\Delta\)CEG(c.g.c)

=> AK = GC

cm tương tự ta có: \(\Delta\)GDC = \(\Delta\)IDB(c.g.c)

=> GC=BI và AK=GC => AK=GC=B

b, Theo câu a, ta có \(\Delta\)AEK = \(\Delta\)CEG(c.g.c)

=> ^EAK = ^ECG

=> AK//GC

theo câu a, ta có: \(\Delta\)GDC=\(\Delta\)IDB(c.g.c)

=> ^DGC= ^DIB=> GC//BI và AK//GC

=> AK//BI

c, ta có: AD là đường trung tuyến ứng với cạnh BC của \(\Delta\)ABC

BE là đường trung tuyến ứng với cạnh AC của \(\Delta\)ABC

=> giao của AD và BE là trọng tâm của \(\Delta\)ABC

=> G là trọng tâm của \(\Delta\)ABC

=> GA = 2GD

mà GI = ID

=> GA = GI + ID = GI

ta có G là trọng tâm của \(\Delta\)ABC; BE là đường trung tuyến của \(\Delta\)ABC

=> BG = 2GE mà GE = EK

=> BG = GE + EK = GK

xét \(\Delta\)GAK và \(\Delta\)GIB có :

GA=GI(cmt)

GK=GB(cmt)

^AGK= ^BGI(2 góc đối đỉnh)

=>\(\Delta\)GAK=\(\Delta\)GIB(c.g.c)

3 tháng 10 2021

a) Xét tam giác MNP có:

D là trung điểm MN

DE//NP

E thuộc MP

=> E là trung điểm MP

b) Xét tam giác MNP có:

D là trung điểm MN

E là trung điểm MP

=> DE là đường trung bình

\(\Rightarrow DE=\dfrac{1}{2}NP=\dfrac{1}{2}.6=3\left(cm\right)\)