Cho tam giác ABC có i là trung điểm AB, iH//BC,H thuộc AC
a.chứng minh HA=HC ?
b.cho BC=5cm . TÍNH iH ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Py ta go ta có
BC2=AB2+AC2
=> 122=52+AC2
=> AC2=122-52= 119
=> AC=
Tự vẽ hình nhé ?
a) Xét ∆ABC vuông tại B có :
AB2 + BC2 = AC2 (định lí pi-ta-go)
Mà AB = 5cm (GT), BC = 12cm (GT)
=> 52 + 122 = AC2
=> 25 + 144 = AC2
=> AC2 = 169
=> AC2 = \(\sqrt{169}\)
=> AC = 13cm (đpcm)
b) Xét ∆ABI và ∆AMI có :
AI chung
\(\widehat{BAI}=\widehat{MAI}\) (do AI là tia pg của \(\widehat{BAC}\)(GT))
AB = AM (GT)
=> ∆ABI = ∆AMI (c.g.c) (1)
c) Từ (1) => BI = MI (2 cạnh tương ứng) (2)
Từ (1) => \(\widehat{ABI}=\widehat{AMI}\)(2 góc t.ứng)
Mà \(\widehat{ABI}=\widehat{HBI}=90^o\)(do AB ⊥ AC (GT))
Ngoặc 2 điều trên
=> \(\widehat{HBI}=\widehat{AMI}=90^o\)(3)
Mà \(\widehat{AMI}+\widehat{CMI}=180^o\)(kề bù)
=> \(\widehat{CMI}=90^o\)(4)
Từ (3), (4) => \(\widehat{HBI}=\widehat{CMI}\)(5)
Xét ∆BIH và ∆MIC có :
\(\widehat{BIH}=\widehat{MIC}\)(đối đỉnh)
BI = MI (Theo (2))
\(\widehat{HBI}=\widehat{CMI}\)(Theo (5))
=> ∆BIH = ∆MIC (g.c.g) (6)
=> IH = IC (2 cạnh t.ứng)
P/s : Không biết có phải bạn chép sai đề không chứ IH không bằng IM nên mình suy ra vậy.
d) Gọi giao điểm của AI và HC là K
Từ (6) => BH = MC (2 cạnh t.ứng)
Mà AB = AM (GT)
AB + BH = AH
AM + MC = AC
=> AH = AC (7)
Xét ∆AHK và ∆ACK có :
AK chung
\(\widehat{HAK}=\widehat{CAK}\)(do AI là tia pg của \(\widehat{BAC}\)(GT))
AH = AC (Theo (7))
=> ∆AHK = ∆ACK (c.g.c) (8)
=> HK = CK (2 cạnh t.ứng)
Mà K nằm giữa H và C
=> K là trung điểm của HC (9)
Từ (8) => \(\widehat{AKH}=\widehat{AKC}\)(2 góc t.ứng)
Mà \(\widehat{AKH}+\widehat{AKC}=180^o\)(kề bù)
=> \(\widehat{AKH}=\widehat{AKC}=180^o:2=90^o\)
=> AK ⊥ HC (đ/n) (10)
Từ (9), (10) => AI là đường tr/trực của HC (đpcm)
Vậy...
a: Xét ΔBAI vuông tại A và ΔBHI vuông tại H có
BI chung
\(\widehat{ABI}=\widehat{HBI}\)
Do đó: ΔBAI=ΔBHI
Suy ra: IA=IH
b: Xét ΔAIK vuông tại A và ΔHIC vuông tại H có
IA=IH
\(\widehat{AIK}=\widehat{HIC}\)
Do đó: ΔAIK=ΔHIC
Suy ra: IK=IC
hay ΔIKC cân tại I
xét tam giác ABE và tam giác ADE
AE chung
góc BAE = góc DAE(AE la tia phân giác của góc E)
AB = AD ( gt)
=> tam giác ABE = tam giac DAE ( c.g.c)
b) xét tam giác ABI và tam giác ADI
AI chung
góc BAE = góc DAE
tam giác ABI=tam giác ADI
=> BI = DI ( 2 cạnh t/ứ )
=> I là trung điểm của BD
Cho tam giác ABC có AB=AC kẻ AI vuông góc BC(I thuộc BC) a)chứng minh rằng IB=IC b)Cho AB=5cm,BC=6cm.Tính độ dài IA c)Kẻ IH vuông góc AB(H thuộc AB),IK vuông góc AC(K thuộc AC).Tam giác HIK là tam giác gì?Vì sao? d)Chứng minh HK song song BC
đk vậyBạn ơi, mình sắp xếp các cạnh và các góc đúng, không sai đâu nên đừng viết ngược lại nhá
a, Ta có : BH = HC = BC : 2
=> BH = HC = 8 : 2
=> BH = HC = 4 ( cm )
=> BH = HC
b, - Xét tam giác AHB vuông tại H có :
AC2 = AH2 + HC2
=> 52 = AH2 + 42
=> 25 = AH2 + 16
=> AH2 = 25 + 16
=> AH2 = 41
=> AH = 20,5 ( cm )
a: Xét ΔAIB và ΔAIC có
AB=AC
\(\widehat{BAI}=\widehat{CAI}\)
AI chung
Do đó: ΔAIB=ΔAIC
b: ΔAIB=ΔAIC
=>IB=IC và \(\widehat{AIB}=\widehat{AIC}\)
mà \(\widehat{AIB}+\widehat{AIC}=180^0\)(hai góc kề bù)
nên \(\widehat{AIB}=\widehat{AIC}=\dfrac{180^0}{2}=90^0\)
=>AI\(\perp\)BC
b: Xét ΔAHI vuông tại H và ΔAKI vuông tại K có
AI chung
\(\widehat{HAI}=\widehat{KAI}\)
Do đó: ΔAHI=ΔAKI
=>IH=IK
c: Xét ΔHIN vuông tại H và ΔKIM vuông tại K có
IH=IK
\(\widehat{HIN}=\widehat{KIM}\)
Do đó: ΔHIN=ΔKIM
=>IN=IM và HN=KM
ΔAHI=ΔAKI
=>AH=AK
AH+HN=AN
AK+KM=AM
mà AH=AK và HN=KM
nên AN=AM
=>A nằm trên đường trung trực của NM(1)
IN=IM(cmt)
nên I nằm trên đường trung trực của MN(2)
PN=PM
=>P nằm trên đường trung trực của MN(3)
Từ (1),(2),(3) suy ra A,I,P thẳng hàng
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
a: Xét ΔABC có
I là trung điểm của AB
IH//BC
Do đó: H là trung điểm của AC
b: Xét ΔABC có
I là trung điểm của AB
H là trung điểm của AC
Do đó: IH là đường trung bình của ΔABC
Suy ra: \(IH=\dfrac{BC}{2}=2.5\left(cm\right)\)