Giải BPT sau: \(\frac{x-5}{3-x}\le0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)16x-5x^2-3 <= 0`
`<=>5x^2-16x+3 >= 0`
`<=>5x^2-15x-x+3 >= 0`
`<=>(x-3)(5x-1) >= 0`
`<=>` $\left[\begin{matrix} \begin{cases} x-3 \ge 0<=>x \ge 3\\5x-1 \ge 0<=>x \ge \dfrac{1}{5} \end{cases}\\ \begin{cases} x-3 \le 0<=>x \le 3\\5x-1 \le 0<=>x \le \dfrac{1}{5} \end{cases}\end{matrix}\right.$
`<=>` $\left[\begin{matrix} x \ge 3\\ x \le \dfrac{1}{5}\end{matrix}\right.$
Vậy `S={x|x >= 3\text{ hoặc }x <= 1/5}`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
`b)[2x+5]/[x-24] > 1`
`<=>[2x+5]/[x-24]-1 > 0`
`<=>[2x+5-x+24]/[x-24] > 0`
`<=>[x+29]/[x-24] > 0`
`<=>` $\left[\begin{matrix} x < -29 \\ x > 24\end{matrix}\right.$
Vậy `S={x|x > 24\text{ hoặc }x < -29}`
a/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge2\\x\ne\left\{3;11\right\}\end{matrix}\right.\)
Đặt \(\sqrt{x-2}=t\ge0\)
\(\Rightarrow\frac{3}{t-1}\ge\frac{5}{t-3}\)
\(\Leftrightarrow\frac{3}{t-1}-\frac{5}{t-3}\ge0\)
\(\Leftrightarrow\frac{3t-9-5t+5}{\left(t-1\right)\left(t-3\right)}\ge0\)
\(\Leftrightarrow\frac{-2t-4}{\left(t-1\right)\left(t-3\right)}\ge0\)
\(\Leftrightarrow\frac{t+2}{\left(t-1\right)\left(t-3\right)}\le0\)
\(\Leftrightarrow1< t< 3\)
\(\Rightarrow1< \sqrt{x-2}< 3\)
\(\Leftrightarrow1< x-2< 9\Rightarrow3< x< 11\)
b/
ĐKXĐ: \(x\ge3\)
- Với \(x=3\) BPT thỏa mãn
- Với \(x>3\Rightarrow\sqrt{x-3}>0\) BPT tương đương
\(x-\frac{1}{2-x}\le0\Leftrightarrow x+\frac{1}{x-2}\le0\)
\(\Leftrightarrow\frac{x^2-2x+1}{x-2}\le0\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{x-2}\le0\Rightarrow\) không tồn tại x thỏa mãn
Vậy BPT có nghiệm duy nhất \(x=3\)
\(\frac{x^2+3x-1}{2-x}+x>0\Leftrightarrow\frac{5x-1}{2-x}>0\Rightarrow\frac{1}{5}< x< 2\)
\(\frac{\left(x-1\right)^3\left(x+2\right)^2\left(x+6\right)}{\left(x-7\right)^3\left(x-2\right)^2}\le0\Leftrightarrow\left[{}\begin{matrix}x\le-6\\x=-2\\1\le x< 2\\2< x< 7\end{matrix}\right.\)
Kết hợp lại ta có: \(1\le x< 2\)
\(\Leftrightarrow\frac{x+3}{\left(x+1\right)\left(x-2\right)}\le0\)
\(\Leftrightarrow x\in(-\infty;-3]\cup\left(-1;-2\right)\)