tính tổng
a)\(\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{99.100}\)
b)\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{27.30}\)
c)\(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{7.10}+...+\frac{2}{93.95}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 1/1.2+1/1.3+...+1/99.100
= 1-1/2+1/2-1/3+1/3+...+1/99-1/100
=1-1/100
=99/100
a)=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\)
\(=1-\frac{1}{2009}\)
\(=\frac{2008}{2009}\)
b) =\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{94}-\frac{1}{97}\)
\(=1-\frac{1}{97}\)
=\(\frac{96}{97}\)
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2008.2009}\) \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2008}-\frac{1}{2009}\)
= 1 - 1/2009
= 2008/2009
b) 3/1.4 + 3/4.7 + 3/7.10 + .... + 3/94.97
= 1- 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + .... + 1/94 - 1/97
= 1 - 1/97
= 96/97
a) \(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+.....+\frac{5}{27.30}\)
\(=\frac{5}{3}\left(\frac{1}{1.4}+\frac{1}{4.7}+........+\frac{1}{27.30}\right)\)
\(=\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{27}-\frac{1}{30}\right)\)
\(=\frac{5}{3}\left(1-\frac{1}{30}\right)\)
\(=\frac{5}{3}.\frac{29}{30}=\frac{29}{36}\)
Đặt \(A=\frac{12}{3\cdot5}+\frac{12}{5\cdot7}+\frac{12}{7\cdot9}+....+\frac{12}{97\cdot99}\)
\(2A=\frac{12}{3}-\frac{12}{5}+\frac{12}{5}-\frac{12}{7}+...+\frac{12}{97}-\frac{12}{99}\)
\(2A=\frac{12}{3}-\frac{12}{99}\)
\(A=\frac{128}{33}\cdot\frac{1}{2}=\frac{64}{33}\)
a) \(\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\)
\(=\frac{5.2^{30}.3^{18}-2^2.2^{27}.3^{20}}{5.2^9.2^{19}.3^{19}-7.2^{29}.3^{18}}\)
\(=\frac{2^{29}.3^{18}\left(5.2-3^2\right)}{2^{18}.3^{18}\left(5.3-7.2\right)}\)
\(=\frac{2.1}{1}=2\)
\(\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+\frac{3^2}{10.13}+...+\frac{3^2}{97.100}\)
\(=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{97.100}\right)\)
\(=3.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=3.\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}\)
\(A=\frac{9}{1.4}+\frac{9}{4.7}+...+\frac{9}{53.56}\)
\(\Rightarrow\frac{1}{3}A=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{53.56}\)
\(\Rightarrow\frac{1}{3}A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{53}-\frac{1}{56}\)
\(\Rightarrow\frac{1}{3}A=1-\frac{1}{56}\)
\(\Rightarrow\frac{1}{3}A=\frac{55}{56}\)
\(\Rightarrow A=\frac{55}{56}\times3\)
\(\Rightarrow A=\frac{165}{56}\)
\(B=3.\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+........+\frac{1}{27.30}\right)\)
\(B=3.\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-.......-\frac{1}{27}+\frac{1}{27}-\frac{1}{30}\right)\)
\(B=1.\left(\frac{1}{1}-\frac{1}{30}\right)\)
\(B=\frac{29}{30}\)
B =\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{27.30}\)
B = \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{27}-\frac{1}{30}\)
B =\(\frac{1}{1}-\frac{1}{30}\)
B =\(\frac{29}{30}\)
a) 1/1 - 1/3 +1/3 - 1/5 +........+1/49 - 1/51
=1/1 - 1/51 (các số liền kề nhau cộng lại bằng 0)
=50/51
còn câu b bạn tự giải
nhớ thank mik nha!!!!!
b,khoảng cách của nó là 3 mà tử của nó bằng 3 chứng tỏ nó là dạng đủ
1/1-1/4+1/4-1/7+...+1/97-1/100
1-1/100=99/100
a, \(\frac{9}{1.2}+\frac{9}{2.3}+...+\frac{9}{99.100}\)
=9.(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\))
= 9(1 -\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\))
=9(1-\(\frac{1}{100}\))
A=\(\frac{891}{100}\)
b, \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{27.30}\)
=1-(\(\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{27}-\frac{1}{30}\))
=1-\(\frac{1}{30}\)
B=\(\frac{29}{30}\)
a) \(\dfrac{9}{1.2}+\dfrac{9}{2.3}+...+\dfrac{9}{99.100}\)
\(=9\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\)
\(=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=9\left(1-\dfrac{1}{100}\right)\)
\(=9.\dfrac{99}{100}\)
\(=\dfrac{891}{100}\)
b) \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{27.30}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{27}-\dfrac{1}{30}\)
\(=1-\dfrac{1}{30}\)
\(=\dfrac{29}{30}\)