Tìm x biết:
a/\(\left|2x+1\right|=\left|x-1\right|\)
b/ \(\frac{2x}{3}+\frac{x^2+2x+1}{x+1}=2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(\Rightarrow2x^2-10x-3x-2x^2=26\)
\(\Rightarrow-13x=26\Rightarrow x=-2\)
b) \(3x\left(1-2x\right)+2\left(3x+7\right)=29\)
\(\Rightarrow3x-6x^2+6x+14=29\)
\(\Rightarrow-6x^2+9x-15=0\)
\(\Rightarrow-6\left(x^2-\dfrac{3}{2}x+\dfrac{9}{16}\right)-\dfrac{93}{8}=0\)
\(\Rightarrow-6\left(x-\dfrac{3}{4}\right)^2-\dfrac{93}{8}=0\)(vô lý)
Vậy \(S=\varnothing\)
Gọi d là ƯCLN của 12n+1 và 30n+2
=> 12n+1 chia hết cho d. 30n+2 chia hết cho d
=> (12n+1) - (30n+2) chia hết cho d
=.> 5(12n+1) - 2(30n+2) chia hết cho d
=> 1 chia hết cho d
Ta có d C Ư(1) = [-1;1]
Vây phân số \(\frac{12n+1}{30n+2}\)là phân số tối giản
\(a.\Leftrightarrow x^2+x-6+2x^2+4x+2=x^2-6x+9-2x^2+4x\)
\(\Leftrightarrow4x^2+7x-13=0\)(pt vô nghiệm)
\(b.\Leftrightarrow x^3+3x^2+3x+1-x^2+2x+8=x^3-8+2x^2\)
\(\Leftrightarrow5x=-17\Rightarrow x=\frac{-17}{5}\)
Đặt \(t=x^2+2x+2\left(t\ge1\right)\)
\(c.\Leftrightarrow\frac{t-1}{t}+\frac{t}{t+1}=\frac{7}{6}\)\(\Leftrightarrow\frac{t^2-1+t^2}{t^2+t}=\frac{7}{6}\)\(\Leftrightarrow12t^2-6=7t^2+7t\)
\(\Leftrightarrow5t^2-7t-6=0\Rightarrow\orbr{\begin{cases}t=2\left(tm\right)\\t=\frac{-3}{5}\left(l\right)\end{cases}}\)
\(\Rightarrow x^2+2x+2=2\Rightarrow x=-2\)
1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)
=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)
b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c) TT
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)
=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)
=> \(\left|50x-140\right|=\left|25x+24\right|\)
=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)
Bài 2 : a. |2x - 5| = x + 1
TH1 : 2x - 5 = x + 1
=> 2x - 5 - x = 1
=> 2x - x - 5 = 1
=> 2x - x = 6
=> x = 6
TH2 : -2x + 5 = x + 1
=> -2x + 5 - x = 1
=> -2x - x + 5 = 1
=> -3x = -4
=> x = 4/3
Ba bài còn lại tương tự
a) Qui đồng rồi khử mẫu ta được:
3(3x+2)-(3x+1)=2x.6+5.2
<=> 9x+6-3x-1 = 12x+10
<=> 9x-3x-12x = 10-6+1
<=> -6x = 5
<=> x = -5/6
Vậy ....
b) ĐKXĐ: \(x\ne\pm2\)
Qui đồng rồi khử mẫu ta được:
(x+1)(x+2)+(x-1)(x-2) = 2(x2+2)
<=> x2+3x+2+x2-3x+2 = 2x2+4
<=> x2+x2-2x2+3x-3x = 4-2-2
<=> 0x = 0
<=> x vô số nghiệm
Vậy x vô số nghiệm với x khác 2 và x khác -2
c) \(\left(2x+3\right)\left(\frac{3x+7}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\) (ĐKXĐ:x khắc 2/7)
\(\Leftrightarrow\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)-\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)=0\)
\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left[\left(2x+3\right)-\left(x-5\right)\right]=0\)
\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}+1=0\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}=-1\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x+8=-1\left(2-7x\right)\\x=0-8\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x+8=-2+7x\\x=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}-4x=-10\\x=-8\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-8\end{cases}}}\) (nhận)
Vậy ......
d) (x+1)2-4(x2-2x+1) = 0
<=> x2+2x+1-4x2+8x-4 = 0
<=> -3x2+10x-3 = 0
giải phương trình
a, \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)
\(=>\frac{1-x+x+1}{x+1}+2=\frac{1}{x+1}+2\)
\(=>\frac{2}{x+1}=\frac{1}{x+1}\)
\(=>2x+2=x+1\)
\(=>2x-x=1-2=-1\)
\(=>x=-1\)
vậy nghiệm của phương trình trên là {-1}
À quên ĐKXĐ của câu a là \(x\ne-1\)
Nên \(x\in\varnothing\)nhé :v
\(a,1-3\left|2x-3\right|=-\dfrac{1}{2}\\ 3\left|2x-3\right|=1+\dfrac{1}{2}\\ 3\left|2x-3\right|=\dfrac{3}{2}\\ \left|2x-3\right|=\dfrac{3}{2}:3\\ \left|2x-3\right|=\dfrac{9}{2}\\ \Rightarrow\left[{}\begin{matrix}2x-3=\dfrac{9}{2}\\2x-3=-\dfrac{9}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=\dfrac{15}{2}\\2x=-\dfrac{3}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{4}\\x=-\dfrac{3}{4}\end{matrix}\right.\)
Vậy `x in {15/4;-3/4}`
\(b,\left(\left|x\right|-0,2\right)\left(x^3-8\right)=0\\ \left(\left|x\right|-0,2\right)\left(x-2\right)\left(x^2+2x+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}\left|x\right|-0,2=0\\x-2=0\\x^2+2x+4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\left|x\right|=0,2\\x=2\\\left(x+1\right)^2+3=0\left(lọai\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0,2\\x=-0,2\\x=2\end{matrix}\right.\)
Vậy `x in {+-0,2;2}`
Mình biết làm mỗi phần a thôi
| 2x + 1 | = | x - 1 |
=> \(\orbr{\begin{cases}2x+1=x-1\\2x+1=1-x\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x-2x=1+1\\2x+x=1-1\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}-x=2\\3x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=0\end{cases}}\)