K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}\dfrac{4}{x}=3x-1\\y=3x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x^2-x-4=0\\y=3x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(3x-4\right)\left(x+1\right)=0\\y=3x-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{\dfrac{4}{3};-1\right\}\\y\in\left\{3;-4\right\}\end{matrix}\right.\)

4 tháng 10 2021

\(a,\) Bn tự vẽ

\(b,\) PT hoành độ giao điểm của 2 đths là 

\(\dfrac{1}{2}x=6-2x\Leftrightarrow\dfrac{5}{2}x=6\Leftrightarrow x=\dfrac{12}{5}\Leftrightarrow y=\dfrac{6}{5}\\ \Leftrightarrow B\left(\dfrac{12}{5};\dfrac{6}{5}\right)\)

16 tháng 11 2023

a: loading...

 

b: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\3x-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=0\end{matrix}\right.\)

Vậy: A(1/3;0)

Tọa độ B là:

\(\left\{{}\begin{matrix}y=0\\-x+3=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\-x=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=3\end{matrix}\right.\)

Vậy: B(3;0)

Tọa độ C là:

\(\left\{{}\begin{matrix}3x-1=-x+3\\y=3x-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4x=4\\y=3x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\cdot1-1=2\end{matrix}\right.\)

Vậy: C(1;2)

c: Gọi \(\alpha\) là góc tạo bởi (d1) với trục Ox

\(tan\alpha=a=3\)

=>\(\alpha\simeq71^033'\)

AH
Akai Haruma
Giáo viên
22 tháng 7 2021

Bài 1.

Vì đths đi qua $M(-1;1)$ nên:
$y_M=2x_M+b$

$\Leftrightarrow 1=2.(-1)+b$

$\Leftrightarrow b=3$

Vậy đths có pt $y=2x+3$. 

Hình vẽ:

AH
Akai Haruma
Giáo viên
22 tháng 7 2021

Bài 2.

a. Hình vẽ:

Đường màu xanh là $y=2x-1$

Đường màu đỏ là $y=-x+2$

b.

PT hoành độ giao điểm:

$y=2x-1=-x+2$
$\Leftrightarrow x=1$

$y=2x-1=2.1-1=1$

Vậy tọa độ giao điểm của 2 đồ thị là $(1;1)$

22 tháng 7 2021

mình giải bên 24 rồi nhé, đths thì bạn tự vẽ 

1, đths y = 2x + b đi qua M(-1;1) <=> -2 + b = 1 <=> b = 3 

2b, Hoành độ giao điểm thỏa mãn phương trình

2x - 1 = -x + 2 <=> 3x = 3 <=> x = 1

=> y = 2 - 1 = 1 

Vậy y = 2x - 1 cắt y = -x +2 tại A(1;1)

28 tháng 11 2023

a:

loading...

b: phương trình hoành độ giao điểm là:

4x+2=2x-2

=>4x-2x=-2-2

=>2x=-4

=>x=-2

Thay x=-2 vào y=4x+2, ta được:

\(y=4\cdot\left(-2\right)+2=-8+2=-6\)

Vậy: M(-2;-6)

c: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\4x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\4x=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)

Tọa độ B là:

\(\left\{{}\begin{matrix}y=0\\2x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\2x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=1\end{matrix}\right.\)

Vậy: B(1;0); A(-1/2;0)

d: M(-2;-6); B(1;0); A(-1/2;0)

\(MA=\sqrt{\left(-\dfrac{1}{2}+2\right)^2+\left(0-6\right)^2}=\dfrac{3\sqrt{17}}{2}\)

\(MB=\sqrt{\left(1+2\right)^2+\left(0+6\right)^2}=3\sqrt{5}\)

\(AB=\sqrt{\left(-\dfrac{1}{2}-1\right)^2+\left(0-0\right)^2}=\dfrac{3}{2}\)

Chu vi tam giác MAB là:

\(C_{MAB}=MA+MB+AB=\dfrac{3}{2}+3\sqrt{5}+\dfrac{3\sqrt{17}}{2}\)

Xét ΔMAB có \(cosAMB=\dfrac{MA^2+MB^2-AB^2}{2\cdot MA\cdot MB}=\dfrac{9}{\sqrt{85}}\)

=>\(sinAMB=\sqrt{1-\left(\dfrac{9}{\sqrt{85}}\right)^2}=\dfrac{2}{\sqrt{85}}\)

Diện tích tam giác MAB là:

\(S_{AMB}=\dfrac{1}{2}\cdot MA\cdot MB\cdot sinAMB=\dfrac{1}{2}\cdot\dfrac{3\sqrt{17}}{2}\cdot3\sqrt{5}\cdot\dfrac{2}{\sqrt{85}}\)

\(=\dfrac{9}{2}\)

 

b: Tọa độ điểm A là:

\(\left\{{}\begin{matrix}y_A=0\\0.5x+2=0\end{matrix}\right.\Leftrightarrow A\left(-4;0\right)\)

Tọa độ điểm B là:

\(\left\{{}\begin{matrix}y_B=0\\5-2x_B=0\end{matrix}\right.\Leftrightarrow B\left(2.5;0\right)\)

Tọa độ điểm C là:

\(\left\{{}\begin{matrix}0.5x+2=5-2x\\y=-2x+5\end{matrix}\right.\Leftrightarrow C\left(1.2;2.6\right)\)

c: \(AB=6.5\)

\(BC=\sqrt{\left(1.2-2.5\right)^2+2.6^2}=\dfrac{13\sqrt{5}}{10}\)

\(AC=\sqrt{\left(1.2+4\right)^2+2.6^2}=\dfrac{13\sqrt{5}}{5}\)

Vì \(AC^2+BC^2=AB^2\) nên ΔABC vuông tại C

\(C=6.5+\dfrac{13\sqrt{5}}{10}+\dfrac{13\sqrt{5}}{5}=\dfrac{65+39\sqrt{5}}{10}\)

\(S=\dfrac{13\sqrt{5}}{10}\cdot\dfrac{13\sqrt{5}}{5}=16.9\)

25 tháng 12 2023

Bạn viết rõ đề bài ra nhé.