Cho \(\frac{1+2+3+...+a}{a}< \frac{1+2+3+...+b}{b}\). Hãy so sánh a và b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(a\left(b+1\right)< b\left(a+1\right)\Leftrightarrow ab+a< ab+b\)
\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)
Áp dụng \(\frac{2^{2018}}{3^{2019}}< \frac{2^{2018}+1}{3^{2019}+1}\)
Ta có:
\(1-\frac{a}{b}=\frac{b-a}{b}\)
\(1-\frac{a+1}{b+1}=\frac{b+1-a-1}{b+1}=\frac{b-a}{b+1}\)
Vì b < b + 1 và a < b; a, b nguyên dương => b - a > 0 nên \(\frac{b-a}{b}>\frac{b-a}{b+1}\)
Do đó \(1-\frac{a}{b}>1-\frac{a+1}{b+1}\)
\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)
Áp dụng chứng minh tương tự nhé bạn
Co: \(\frac{1+2+3+...+a}{a}\)=\(\frac{1}{a}+\frac{2}{a}+\frac{3}{a}+...+\frac{a}{a}\)
\(\frac{1+2+3+...+b}{b}\)=\(a>b=>\frac{1}{a}< \frac{1}{b},\frac{2}{a}< \frac{2}{b},...\)
=>\(\frac{1+2+3+...+a}{a}< \frac{1+2+3+...+b}{b}\)
TL :
Ko biết thì đừng làm
Nhớ làm hết , chi tiết mới đc 1 SP
HT
\(\frac{1+2+3+...+2013a}{a}=\frac{1+2+3+...+2013a-1}{a}+\frac{2013a}{a}=\frac{1+2+3+...+2013a-1}{a}+2013\)
\(\frac{1+2+3+...+2013b}{b}=\frac{1+2+3+...+2013b-1}{b}+\frac{2013b}{b}=\frac{1+2+3+...+2013b-1}{b}+2013\)
suy ra \(\frac{1+2+3+...+2013a-1}{a}<\frac{1+2+3+...+2013b-1}{b}\)
\(\Rightarrow\frac{2013a-1}{a}<\frac{2013b-1}{b}\Rightarrow\frac{a\left(2013-\frac{1}{a}\right)}{a}<\frac{b\left(2013-\frac{1}{b}\right)}{b}\)
\(\Rightarrow2013-\frac{1}{a}<2013-\frac{1}{b}\Rightarrow\frac{1}{a}<\frac{1}{b}\Rightarrow b>a\)
Ta có : \(\frac{1}{n^2}-1=\frac{1-n^2}{n^2}=\frac{\left(1-n\right)\left(1+1\right)}{n^2}\)
Áp dụng :
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{2014^2}-1\right)\)
\(=\frac{-1.3}{2.2}.\frac{-2.4}{3.3}.\frac{-3.5}{4.4}.....\frac{-2013.2015}{2014.2014}\)
\(=\frac{-\left(1.2.3...2013\right)\left(3.4.5....2015\right)}{\left(2.3.4.....2014\right)\left(2.3.4......2014\right)}=\frac{-2015}{2014.2}=\frac{-2015}{4028}\)
Sr còn thiếu
\(A=-\frac{2015}{4028}< \frac{-2014}{4028}=-\frac{1}{2}\)
Vậy \(A< B\)
Ta có công thức: \(1+2+3+4+...+n=\frac{n\cdot\left(n+1\right)}{2}\)
Ta có:\(\frac{1+2+3+...+a}{a}< \frac{1+2+3+...+b}{b}\)
\(\Leftrightarrow\frac{\frac{a\left(a+1\right)}{2}}{a}< \frac{\frac{b\left(b+1\right)}{2}}{b}\)
\(\Leftrightarrow\frac{a\left(a+1\right)}{2a}< \frac{b\left(b+1\right)}{2b}\)
\(\Leftrightarrow\frac{a+1}{2}< \frac{b+1}{2}\)
\(\Leftrightarrow a+1< b+1\)
\(\Leftrightarrow a< b\)