K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2019

2S = 1 + 1/2 + 1/2^2 + ... + 1/2^29

2S - S = 1- 1/2^29

S =  1 - 1/2^29 < 1

vậy S < 1

23 tháng 3 2019

S=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{30}}\)

2S= \(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{29}}\)

2S - S=( \(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{29}}\)) - (\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{30}}\))

S= \(1-\frac{1}{2^{30}}\)

S= \(\frac{2^{30}}{2^{30}}-\frac{1}{2^{30}}\)

S= \(\frac{2^{30}-1}{2^{30}}\)

8 tháng 1 2017

S = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...\frac{1}{2^{2012}}+\frac{1}{2^{2013}}\)

2S = \(1+\frac{1}{2^1}+\frac{1}{2^2}+...\frac{1}{2^{2011}}+\frac{1}{2^{2012}}\)

S = 2S - S = \(\left(1+\frac{1}{2^1}+\frac{1}{2^2}+...\frac{1}{2^{2011}}+\frac{1}{2^{2012}}\right)\) - \(\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...\frac{1}{2^{2012}}+\frac{1}{2^{2013}}\right)\)

S = 1 - \(\frac{1}{2013}\)

Vì 1 trừ cho số nào lớn hơn 0 thì hiệu đó cũng bé hơn 1

=> S < 1 (đpcm)

5 tháng 3 2019

S=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2013}}\)

2S=\(1+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)

S=2S-S=(\(1+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\))-(\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2013}}\))

S=1-\(\frac{1}{2013}\)

Vì 1 trừ cho số nào lớn hơn 0 thì hiệu đó cũng bé hơn 1

=>S<1

12 tháng 8 2016

Ta có:

S = 1/22 + 1/32 + 1/42 + ... + 1/20162

    = 1/2.2 + 1/3.3 + 1/4.4 + ... + 1/2016.2016

S  < 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2015.2016

S  < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2015 - 1/2016

S  < 1 - 1/2016

Mà 1 - 1/2016 < 1

=> S < 1

Vậy S < 1

Ủng hộ nha

8 tháng 1 2017

Giả sử có tấm bìa diện tích 1.

Ta cắt ra 1/2 tấm bìa, lấy đi 1 phần, rồi lại cắt ra 1/2 tấm còn lại (tức là 1/4), rồi lấy đi một phần...

Cứ làm như vậy 2013 lần thì ta đã lấy đi một diện tích \(S\), nhưng vẫn còn một góc bìa chưa bị lấy đi.

Vậy \(S< 1\)

7 tháng 8 2018

\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2018}}\)

 \(2S=2.\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2018}}\right)\)

\(2S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\)

\(2S-S=\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2017}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^{2018}}\right)\)

\(S=1-\frac{1}{2^{2018}}< 1\)

7 tháng 8 2018


\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{...1}{2^{2018}}\)

\(\Rightarrow2S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}\)
\(2S-S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{...1}{2^{2018}}\right)\)
\(S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{2018}}\)
\(S=1-\frac{1}{2^{2018}}\)
\(Mà 1-\frac{1}{2^{2018}}< 1\)
\(\Rightarrow S< 1\)

10 tháng 4 2017

VÌ \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2};\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3};...........;\frac{1}{99^2}=\frac{1}{99\cdot99}< \frac{1}{99\cdot100}\)

\(\Rightarrow S< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{99\cdot100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)\(=1-\frac{1}{100}< 1\)\(\Rightarrow S< 1\)

VÌ \(\frac{1}{2\cdot3}< \frac{1}{2\cdot2};.....;\frac{1}{98\cdot99}< \frac{1}{99\cdot99}\)

\(\Rightarrow\)\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+......+\frac{1}{98\cdot99}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}=\frac{50}{100}-\frac{1}{100}=\frac{49}{100}< S\)

\(\Rightarrow\frac{49}{100}< S< 1\)

\(K\)\(mk\)\(nha\)

1 tháng 5 2019

\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)

\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)

\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)

\(\Rightarrow M< 1-\frac{1}{99}< 1\)

Dễ thấy M > 0 nên 0 < M < 1

Vậy M không là số tự nhiên.

1 tháng 5 2019

\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))

\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\left(đpcm\right)\)

2 tháng 5 2017

2/

S = 2 + 22 + 23 +...+ 299

= (2+22+23) +...+ (297+298+299)

= 2(1+2+22)+...+297(1+2+22)

= 2.7 +...+ 297.7

= 7(2+...+297) chia hết cho 7

S = 2+22+23+...+299

= (2+22+23+24+25)+...+(295+296+297+298+299)

= 2(1+2+22+23+24)+...+295(1+2+22+23+24)

= 2.31+...+295.31

= 31(2+...+295) chia hết cho 31

3/

A = 1+5+52+....+5100 (1)

5A = 5+52+53+...+5101 (2)

Lấy (2) - (1) ta được

4A = 5101 - 1

A = \(\frac{5^{101}-1}{4}\)

2 tháng 5 2017

4/

Đặt A là tên của biểu thức trên

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

........

\(\frac{1}{8^2}< \frac{1}{7.8}=\frac{1}{7}-\frac{1}{8}\)

\(\Rightarrow A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}=\frac{1}{1}-\frac{1}{8}=\frac{7}{8}< 1\)

Vậy...

5/

a, Gọi UCLN(n+1,2n+3) = d

Ta có : n+1 chia hết cho d => 2(n+1) chia hết cho d => 2n+2 chia hết cho d

           2n+3 chia hết cho d

=> 2n+2 - (2n+3) chia hết cho d

=> -1 chia hết cho d => d = {-1;1}

Vậy...

b, Gọi UCLN(2n+3,4n+8) = d

Ta có: 2n+3 chia hết cho d => 2(2n+3) chia hết cho d => 4n+6 chia hết cho d

          4n+8 chia hết cho d 

=> 4n+6 - (4n+8) chia hết cho d

=> -2 chia hết cho d => d = {1;-1;2;-2}

Mà 2n+3 lẻ => d lẻ => d khác 2;-2 => d = {1;-1}

Vậy...

Giải:

\(S=\dfrac{1}{50}+\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{98}+\dfrac{1}{99}\) 

\(S=\left(\dfrac{1}{50}+\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{74}\right)+\left(\dfrac{1}{75}+...+\dfrac{1}{98}+\dfrac{1}{99}\right)\) 

\(\Rightarrow S>\left(\dfrac{1}{50}+\dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}\right)+\left(\dfrac{1}{75}+...+\dfrac{1}{75}+\dfrac{1}{75}\right)\) 

\(\Rightarrow S>\dfrac{1}{2}+\dfrac{1}{3}>\dfrac{1}{2}\) 

\(\Rightarrow S>\dfrac{1}{2}\left(đpcm\right)\) 

thôi nhầm tiêu đề, xin lỗi bạn!