K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2019

a-b=5 (1)

a.b=36 (2)

(1): a=5+b the vao (2) ta duoc ptr: (5+b).b=36 gia ptr ta duoc b=-9 va b = 4.

the b=-9 vao  (1) ta duoc a=-4

the b=4 vao (1) ta duoc a=9

vay a=-4, b=-9 va a=4, b=9

11 tháng 2 2022

anh làm mẫu 2 câu còn lại em tự làm cho quen nhé, mấy cái hpt như này thì em dùng phương pháp cộng đại số là tối ưu nhất 

a, \(\hept{\begin{cases}2x+y=5\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=6\\y=x-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

b, \(\hept{\begin{cases}2x-3y=3\\2x+5y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}8y=2\\x=\frac{3+3y}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{1}{4}\\x=\frac{15}{8}\end{cases}}}\)

\(X=\left\{1;2;4;5;7\right\}\)

2 tháng 8 2017

bn có thể kb với mk đc ko

avt616014_60by60.jpgTrần Thị Hảo

6 tháng 3 2020

a) \(\hept{\begin{cases}2x-3y=5\\4x+y=3\end{cases}}\)   và    \(\hept{\begin{cases}2x-3y=5\\12x+3y=a\end{cases}}\)

Ta thấy \(2x-3y=5\Leftrightarrow2x-3y=5\)(Luôn đúng)

Để 2 hệ tương đương :

\(4x+y=3\Leftrightarrow12x+3y=a\)

\(\Leftrightarrow3\left(4x+y\right)=3.3\)

\(\Leftrightarrow12x+3y=9=a\)

Vậy để 2 hệ phương trình tương đương \(\Leftrightarrow a=9\)

b) \(\hept{\begin{cases}x-y=2\\3x+y=1\end{cases}}\)   và   \(\hept{\begin{cases}2ax-2y=1\\x+ay=2\end{cases}}\) 

Ta có : \(x-y=x+ay=2\)

\(\Leftrightarrow y=-ay\)

\(\Leftrightarrow a=-1\)

Thử lại : \(a=-1\)

\(\Leftrightarrow3x+y=-2x-2y=1\)

\(\Leftrightarrow3x+y-2x-2y=2\)

\(\Leftrightarrow x-y=2\)(TM)

Vậy để 2 hệ phương trình tương đương \(\Leftrightarrow a=-1\)

11 tháng 7 2019

Ta có:

\(\hept{\begin{cases}|x+1|+|y+1|=5\left(1\right)\\|x+1|=4y-4\left(2\right)\end{cases}}\)

Thay (2) vào (1):

\(4y-4+|y-1|=5\left(3\right)\)

+Nếu \(y\ge-1\Rightarrow4y-4+y+1=5\Rightarrow5y=8\Rightarrow y=\frac{8}{5}\left(TM\right)\)

Thay y = 8/5 vào (2) ta có: 

\(|x+1|=4.\frac{8}{5}-4\)

\(\Leftrightarrow|x+1|=\frac{12}{5}\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=\frac{12}{5}\\x+1=\frac{-12}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{7}{5}\\x=-\frac{17}{5}\end{cases}}\)

+Nếu \(y\le-1\Rightarrow4y-4-y-1=5\Rightarrow3y=10\Rightarrow y=\frac{10}{3}\left(L\right)\)

cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~

25 tháng 12 2019

\(a+b=2\Rightarrow b=2-a\)

\(\Rightarrow a\left(2-a\right)=-1\Rightarrow2a-a^2+1=0\)

\(\Leftrightarrow\left(a-1\right)^2=2\)

\(\Rightarrow\orbr{\begin{cases}a=\sqrt{2}+1\\a=-\sqrt{2}+1\end{cases}}\)

+)\(a=\sqrt{2}+1\)\(\Rightarrow b=2-1-\sqrt{2}=1-\sqrt{2}\)

+)\(a=-\sqrt{2}+1\)\(\Rightarrow b=2-1+\sqrt{2}=1+\sqrt{2}\)

Vậy hệ có 2 nghiệm \(\left(\sqrt{2}+1;1-\sqrt{2}\right);\left(-\sqrt{2}+1;1+\sqrt{2}\right)\)

24 tháng 12 2019

Ta có: \(ab=-1\Rightarrow b=\frac{-1}{a}\)

Thay \(b=\frac{-1}{a}\)vào bt \(a+b=2\)ta được:

\(a-\frac{1}{a}=2\)

\(\Leftrightarrow\frac{a^2-1}{a}=2\)

\(\Leftrightarrow a^2-1=2a\)

\(\Leftrightarrow a^2-2a-1=0\)

\(\Leftrightarrow\left(a-1\right)^2-2=0\)

\(\Leftrightarrow\left(a-1-\sqrt{2}\right)\left(a-1+\sqrt{2}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a-1-\sqrt{2}=0\\a-1+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=1+\sqrt{2}\\a=1-\sqrt{2}\end{cases}}}\)

+) Với \(a=1+\sqrt{2}\Rightarrow b=1-\sqrt{2}\)

+) Với \(a=1-\sqrt{2}\Rightarrow b=1+\sqrt{2}\)

Vậy nghiệm của phương trình \(\left(a,b\right)=\left\{\left(1+\sqrt{2};1-\sqrt{2}\right);\left(1-\sqrt{2};1+\sqrt{2}\right)\right\}\)