Cho hình chữ nhật ABCD ,AB=8, AD=4. Trên AB lấy AM=5cm. Tia DM cắt tia CB tại E. Tính ED?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ABCD là hình chữ nhật nên AB = DC = 8 cm ; AD = BC = 4 cm
Ta có: \(MB=AB-AM=8-5=3\left(cm\right)\)
Vì \(AD//BC\) \(\Rightarrow AD//CE\)
Áp dụng hệ quả của định lí Ta-lét: \(\frac{AD}{BE}=\frac{AM}{MB}\Rightarrow BE=\frac{AD.MB}{AM}=\frac{4.3}{5}=2,4\left(cm\right)\)
Suy ra: EC = BE + BC = 2,4 + 4 = 6.4 (cm)
Tam giác ABC vuông tại C:
Áp dụng định lí Pytago ta có: \(DE^2=EC^2+CD^2\Rightarrow DE=\sqrt{EC^2+CD^2}=\sqrt{\left(6,4\right)^2+8^2}=\frac{8\sqrt{41}}{5}\left(cm\right)\)
a)Ta có : \(\widehat{A_1}+\widehat{M_1}=90^o;\widehat{M_1}+\widehat{BMC}=90^o\)\(\Rightarrow\widehat{A_1}=\widehat{BMC}\)
Xét \(\Delta ADM\)và \(\Delta BMC\)có : \(\widehat{A_1}=\widehat{BMC}\); \(\widehat{ADM}=\widehat{BCM}\)
\(\Rightarrow\Delta DAM\approx\Delta CMB\left(g.g\right)\)\(\Rightarrow\frac{AD}{DM}=\frac{CM}{BC}\)hay CM = \(\frac{5}{2}.5=12,5\)
b) \(\Delta AMB\)có EK là tia phân giác nên \(\frac{EA}{EB}=\frac{MA}{MB}\)( 1 )
Mặt khác : \(\widehat{B_1}+\widehat{EKB}=90^o;\widehat{B_1}+\widehat{A_2}=90^o\)nên \(\widehat{A_2}=\widehat{EKB}\)
\(\Delta BEK\approx\Delta BMA\left(g.g\right)\)\(\Rightarrow\frac{EK}{EB}=\frac{MA}{MB}\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra EA = EK
c) Ta có : \(\widehat{BMH}=90^o\)nên \(BM\perp AH\)
Xét \(\Delta AHB\)có \(BM\perp AH\); \(HE\perp AB\)nên K là trực tâm \(\Rightarrow AN\perp BH\)
\(\Rightarrow\widehat{ANH}=90^o\)
xét \(\Delta AHN\)và \(\Delta BMH\)có : \(\widehat{ANH}=\widehat{BMH}=90^o;\widehat{MHN}\left(chung\right)\)
\(\Rightarrow\)\(\Delta AHN\approx\Delta BHM\left(g.g\right)\)\(\Rightarrow\)\(\frac{MH}{BH}=\frac{HN}{AH}\)hay \(\frac{MH}{HN}=\frac{BH}{AH}\)
Xét \(\Delta MHN\)và \(\Delta AHB\)có : \(\widehat{MHN}\left(chung\right);\frac{MH}{HN}=\frac{BH}{AH}\)
\(\Rightarrow\)\(\Delta HMN\approx\Delta HBA\left(g.g\right)\) \(\Rightarrow\)\(\widehat{HMN}=\widehat{HBA}\)
Mà EA = EK nên \(\widehat{A_2}=45^o\) \(\Rightarrow\widehat{ABH}=90^o-\widehat{A_2}=45^o\)hay \(\widehat{HMN}=45^o\)
Ta có : \(\widehat{EMN}=180^o-\widehat{AME}-\widehat{HMN}=180^o-45^o-45^o=90^o\)
\(\Rightarrow EM\perp MN\)
Mặt khác : ME là tia phân giác \(\widehat{AMB}\) nên MN là tia phân giác \(\widehat{BMH}\)
Trên tia đối của tia CB lấy điểm F sao cho \(CF=\frac{1}{2}AM\).
Ta có: \(\Delta ADM\infty\Delta CDF\)vì \(\frac{CD}{AD}=\frac{CF}{AM}=\frac{1}{2}\)và A=C=90 độ.
Suy ra: DM=2DF
ADM=CDF\(\Rightarrow\)FMD vuông \(\Rightarrow\)EDF+EDM=90 độ \(\Rightarrow\)EDF+CDE=90 độ
Mà DEF+CDE=90 độ
Suy ra: EDF=DEF\(\Rightarrow\)tam giác DEF cân tại F.\(\Rightarrow\)DF=EF
Vậy DM=2DF=2EF=2EC+2CF=2EC+AM