K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABEF có

BE//AF

BE=AF

Do đó: ABEF là hình bình hành

mà BE=BA

nên ABEF là hình thoi

b: Xét ΔBEI có BE=BI

nên ΔBEI cân tại B

mà góc IBE=60 độ

nên ΔBEI đều

=>góc EIB=60 độ

=>góc EIA=góc IAF

=>AIEF là hình thang cân

c: Xét ΔABD có

BF là đườ trung tuyến

BF=AD/2

D đó: ΔBAD vuông tại B

=>góc IBD=90 độ

Xét tứ giác BICD có

BI//CD

BI=CD
DO đó: BICD là hình bình hành

mà góc IBD=90 độ

nên BICD là hình chữ nhật

a: Xét ΔABC có

E là trung điểm của BC

F là trung điểm của AC

Do đó: EF là đường trung bình của ΔABC

Suy ra: EF//AD và EF=AD

Xét tứ giác ADEF có

EF//AD

EF=AD

Do đó: ADEF là hình bình hành

mà \(\widehat{FAD}=90^0\)

nên ADEF là hình chữ nhật

mà AD=AF

nên ADEF là hình vuông

7 tháng 11 2015

BẠN TỰ VẼ HÌNH NHÉ MÌNH GIẢI THÔI NHA ^^
 

                      Giải
a) Xét tam giác ODE, có:
    IK là đường trung bình(I t/điểm OD và K trung điểm OE)
    =>IK // DE
    Vậy:IKED là hình thang

b) Ta có IAKO là hcn (A=AIO=AKO=90 độ)
    =>AK=IO và AK // IO. 
    Mà D,I,O thẳng hàng và DI=IO (D đxứng O qua I)
    =>AK//DI và AK=DI
    =>AKDI là hbh.
c)Ta có tam giác ABC có góc A=90 độ và Góc C=30 độ
   =>góc B=60 độ
   Và tam giác ABC vuông ở A và AM là đường trung tuyến
   => AM =1/2 BC  =>AM=BM
   =>Tam giác ABM cân ở M. Và Góc B= 60độ (cmt) 
   => Tam giác ABM đều => AB=AM=BM
   Vậy chu vi tam giác ABC= 3 x 7=21 (cm)


 

a: Xét tứ giác DCEF có 

DF//EC

DF=EC

Do đó: DCEF là hình bình hành

29 tháng 12 2014

câu c:

-chứng minh ABPD là hình bình hành suy ra:Elà trung điểm của AP

-Suy ra QElà đường trung bình tam giác APD , do đó :QE // PD (1)

-Mà QN là đường trung binh hình thang ABCD suy ra: QN//CD (2)

-Từ (1) và (2) suy ra :Q,N,E thẳng hành (theo tiên đề ơ-cơlit)

 

10 tháng 11 2023

loading... a) Do ABCD là hình bình hành (gt)

⇒ AB = CD   (1)

Do E là trung điểm AB (gt)

⇒ AE = BE = AB : 2   (2)

Do F là trung điểm CD (gt)

⇒ CF = DF = CD : 2   (3)

Từ (1), (2) và (3)

⇒ AE = BE = CF = DF

Do ABCD là hình bình hành (gt)

⇒ AB // CD

⇒ AE // CF

Tứ giác AECF có:

AE // CF (cmt)

AE = CF (cmt)

⇒ AECF là hình bình hành

b) Do AB // CD (cmt)

⇒ BE // DF

Tứ giác BEDF có:

BE // DF (cmt)

BE = DF (cmt)

⇒ BEDF là hình bình hành

⇒ BF // DE

⇒ BK // EI và KF // DI

∆CDI có:

F là trung điểm CD (gt)

KF // DI (cmt)

⇒ K là trung điểm của CI

⇒ CK = IK (4)

∆ABK có:

E là trung điểm của AB (gt)

BK // EI (cmt)

⇒ I là trung điểm của AK

⇒ AI = IK (5)

Từ (4) và (5)

⇒ AI = IK = KC

11 tháng 3 2020

A B C N M G E F I

a, xét tứ giác BICG có : 

M là trung điểm cuả BC do AM là trung tuyến (gt)

M là trung điểm của GI do I đx G qua M (gt)

=> BICG là hình bình hành (dh)

+ G là trọng tâm của tam giác ABC (gt)

=> GM = AG/2 và  GN = BG/2 (đl)

E; F lần lượt là trung điểm của  GB; GA (gt) => FG = AG/2 và GE = BG/2 (tc)

=> FG = GM và GN = GE 

=> G là trung điểm của FM và EN 

=> MNFE là hình bình hành (dh)

b, MNFE là hình bình hành (câu a)  

để MNFE là hình chữ nhật

<=> NE = FM 

có : NE = 2/3BN và FM = 2/3AM

<=> AM = BN  mà AM và BN là trung tuyến của tam giác ABC (Gt)

<=>  tam giác ABC cân tại C (đl)

c, khi BICG là hình thoi 

=> BG = CG 

BG và AG là trung tuyến => CG là trung tuyến

=> tam giác ABC cân tại A