Tìm GTNN của biểu thức A = 2015 / |x| - 3. với x là số nguyên.
Suli đang cần rất gấp nha các bn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện \(0\le x\le1\)
\(A=2014\sqrt{x}+2015\sqrt{1-x}\)
\(=2014\left(\sqrt{x}+\sqrt{1-x}\right)+\sqrt{1-x}\)
Ta có:
\(\sqrt{x}+\sqrt{1-x}\ge\sqrt{x+1-x}=1\)
Và \(x\le1\Leftrightarrow1-x\ge0\)
Từ đây ta có
\(A\ge2014.1+0=2014\)
Vậy GTNN của A = 2014 đạt được khi x = 1
Vì | x -3 | > hoặc = 0
Suy ra : |x-3|+50 >hoặc =50
Vì A nhỏ nhất suy ra | x-3 | +50 =50
Suy ra x-3 =0
Suy ra x=3
Vậy GTNN của A = 50 khi x=3
\(\left(x^2+3x+4\right)^2=\left(x^2+3x+\frac{9}{4}+\frac{7}{4}\right)^2\)
\(=[\left(x+\frac{3}{2}\right)^2+\frac{7}{4}]^2\ge\left(\frac{7}{4}\right)^2=\frac{49}{16}\)
Vay GTNN của A là \(\frac{49}{18}\) đạt được khi x= \(-\frac{3}{2}\)
Để A không xác định được => x-2=0 => x=2
Để A âm => x-2 âm (vì x2+3 luôn dương) => x-2<0 => x<2
Để A nguyên => x2+3 chia hết cho x-2 => x.(x-2)+2.(x-2)+4+3 = (x-2).(x+2)+7 chia hết cho x-2 => 7 chia hết cho x-2
Lập Bảng
a) Nhận xét :
/ x + 8 / > 0 với mọi x
/ y - 3 / > 0 với mọi y
=> / x + 8 / + / y - 3 / > 0
=> / x + 8 / + / y - 3 / + 2018 > 2018
=> M > 2018
=> Giá trị nhỏ nhất của M = 2018
Dấu " = " xảy ra khi :
/ x + 8 / = 0
và / y - 3 / = 0
=> x + 8 = 0
và y - 3 = .0
=> x = - 8
Và y = 3
Vậy giá trị nhỏ nhất của M là 2018 khi x = - 8 và y = 3
b) Nhận xét :
/ x + 2 / > 0 với mọi x
/ y - 1 / > 0 với mọi y
=> / x + 2 / + / y - 1 / > 0
=> - / x + 2 / - / y - 1 / < 0
=> - / x + 2 / - / y - 1 / + 1999 < 1999
=> N < 1999
=> Giá trị lớn nhất của N = 1999
Dấu " = " xảy ra khi :
/ x + 2 / = 0
và / y - 1 / = 0
=> x + 2 = 0
và y - 1 = 0
=> x = - 2
và y = 1
Vậy giá trị lớn nhất của N là 1999 khi x = - 2 và y = 1