Giải hệ phương trình :
\(\hept{\begin{cases}x^2=2y^2-y+3x-5\\y^2=x^2+x-3y-2\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left(x+3y\right)-\left(x+y\right)=1-5\)
\(2y=-4\Rightarrow y=-2\)
\(\Rightarrow x=5-\left(-2\right)=7\)( cái này mk tự nghĩ cho nhanh )
2) \(3x-y=2\Rightarrow y=3x-2\)Thay vào vế 2 =>
\(x+3x-2=6\)
\(4x=8\Rightarrow x=2\)
\(\Rightarrow y=6-2=4\)
3) \(x+2y=5\Rightarrow2y=5-x\)Thay vào vế 2
\(3x-5+x=3\)
\(4x=8\Rightarrow x=2\)
\(2y=3\Rightarrow y=\frac{3}{2}\)
4) \(2x-y=5\Rightarrow2x=5+y\)( Thay vào vế 2 )
\(5+y+3y=1\)
\(4y=-4\Rightarrow y=-1\)
\(\Rightarrow2x=4\Rightarrow x=2\)
mk làm như vậy ko biết đúng hay sai, bạn thông cảm ...
1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)
\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)
+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)
+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:
\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)
Vậy hệ có nghiệm (1;1),(-1;-1).
2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)
\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)
Vậy hệ có nghiệm (1;1).
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)
a) \(\hept{\begin{cases}x+3y=4\left(1\right)\\2x+5y=7\left(2\right)\end{cases}}\)
Nhân cả hai vế ở phương trình (1) với 2 ta được \(2x+6y=8\)(3)
Lấy (3) - (2) ta được \(y=1\)
Từ đó suy ra x = 4 - 3 . 1 = 4 - 3 = 1
Vậy x = y = 1
\(\hept{\begin{cases}x^2=3x+2y\\y^2=3y+2x\end{cases}}\)
\(\Rightarrow x^2-y^2=3\left(x-y\right)-2\left(x-y\right)\)
\(\Rightarrow\left(x+y\right)\left(x-y\right)=\left(x-y\right)\)
\(\Rightarrow\left(x+y\right)\left(x-y\right)-\left(x-y\right)=0\)
\(\Rightarrow\left(x+y-1\right)\left(x-y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y-1=0\\x-y=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+y=1\\x=y\end{cases}}\)
a/
\(\hept{\begin{cases}x^2-3x=2y\\y^2-3y=2x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2y=x^2-3x\\y^2-3y=2x\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y=\frac{x^2-3x}{2}\\y^2-3y=2x\left(1\right)\end{cases}}\)
(1) \(\Leftrightarrow\left(\frac{x^2-3x}{2}\right)^2-3\left(\frac{x^2-3x}{2}\right)=2x\)
\(\Leftrightarrow\frac{x^4-6x^3+9x^2}{2}-\frac{3x^2-9x}{2}=2x\)
\(\Leftrightarrow x^4-6x^3+9x^2-3x^2+9x=4x\)
\(\Leftrightarrow x^4-6x^3+6x^2+5x=0\)
\(\Leftrightarrow x\left(x^3-6x^2+6x+5\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x^3-6x^2+6x+5=0\left(2\right)\end{cases}}\)
Xin làm ý b
\(\hept{\begin{cases}x^2-xy+y=1\\y^2-xy+x=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-xy=1-y\\y^2-xy=1-x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\left(1-y\right)=1-y\\y\left(1-x\right)=1-x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
Vậy x = y = 1