K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 3 2020

Lời giải:

a) Xét tử thức:

\((x^2+y)\left(y+\frac{1}{4}\right)+x^2y^2+\frac{3}{4}\left(y+\frac{1}{3}\right)=x^2y+\frac{x^2}{4}+y^2+\frac{y}{4}+x^2y^2+\frac{3}{4}y+\frac{1}{4}\)

\(=x^2y+\frac{x^2}{4}+y+y^2+x^2y^2+\frac{1}{4}\)

\(=(x^2y+\frac{x^2}{4}+x^2y^2)+(y^2+y+\frac{1}{4})=x^2(y^2+y+\frac{1}{4})+(y^2+y+\frac{1}{4})\)

\(=(x^2+1)(y+\frac{1}{2})^2\)

Xét mẫu thức:
\(x^2y^2+1+(x^2-y)(1-y)=x^2y^2+1+x^2-x^2y-y+y^2\)

\(=(x^2y^2-x^2y+x^2)+(y^2-y+1)=x^2(y^2-y+1)+(y^2-y+1)\)

\(=(y^2-y+1)(x^2+1)\)

Do đó:

\(A=\frac{(y+\frac{1}{2})^2}{y^2-y+1}\) là giá trị không phụ thuộc vào $x$

b)

\((y+\frac{1}{2})^2\geq 0, \forall y\in\mathbb{R}\)

\(y^2-y+1=(y-\frac{1}{2})^2+\frac{3}{4}>0, \forall y\in\mathbb{R}\)

Do đó: $A=\frac{(y+\frac{1}{2})^2}{y^2-y+1}\geq 0$

Hay $A_{\min}=0$ tại $y=\frac{-1}{2}$

9 tháng 12 2018

\(A\)xác định \(\Leftrightarrow x^2y^2+1+\left(x^2-y\right)\left(1-y\right)\ne0\)

\(\Leftrightarrow x^2y^2+1+x^2-x^2y-y+y^2\ne0\)

\(\Leftrightarrow\left(x^2y^2+y^2\right)+\left(x^2+1\right)-\left(x^2y+y\right)\ne0\)

\(\Leftrightarrow y^2\left(x^2+1\right)+\left(x^2+1\right)-y\left(x^2+1\right)\ne0\)

\(\Leftrightarrow\left(x^2+1\right)\left(y^2-y+1\right)\ne0\)

\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\)

Ta có: \(\hept{\begin{cases}x^2+1>0\forall x\\\left(y-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall y\end{cases}}\)\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]>0\forall x;y\)

\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\forall x;y\)

\(\Leftrightarrow A\ne0\forall x;y\)

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

26 tháng 4 2020

bạn Kiệt có đánh sai chỗ nào ko vậy :)). mình thấy có 1 lỗi :)).

Đặt \(a=2x+y;b=2y+x\) \(\left(a,b>0\right)\)

Khi đó : \(P=\frac{2}{\sqrt{a^3+1}-1}+\frac{2}{\sqrt{b^3+1}-1}+\frac{ab}{4}-\frac{8}{a+b}\)

Cô-si , ta có : \(\sqrt{a^3+1}=\sqrt{\left(a+1\right)\left(a^2-a+1\right)}\le\frac{a+1+a^2-a+1}{2}=\frac{a^2+2}{2}\)

\(\Rightarrow\sqrt{a^3+1}-1\le\frac{a^2}{2}\)

Tương tự : \(\sqrt{b^3+1}-1\le\frac{b^2}{2}\)

Mặt khác : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Rightarrow\frac{2}{a}+\frac{2}{b}\ge\frac{8}{a+b}\Rightarrow-\frac{8}{a+b}\ge\frac{-2}{a}-\frac{2}{b}\)

\(P\ge\frac{4}{a^2}+\frac{4}{b^2}+\frac{ab}{4}-\frac{2}{a}-\frac{2}{b}=\left(\frac{4}{a^2}+1\right)+\left(\frac{4}{b^2}+1\right)+\frac{ab}{4}-\frac{2}{a}-\frac{2}{b}-2\)

\(\ge\frac{4}{a}+\frac{4}{b}+\frac{ab}{4}-\frac{2}{a}-\frac{2}{b}-2=\frac{2}{a}+\frac{2}{b}+\frac{ab}{4}-2\ge3\sqrt[3]{\frac{2}{a}.\frac{2}{b}.\frac{ab}{4}}-2=1\)

Vậy GTNN của P là 1 \(\Leftrightarrow a=b=2\Leftrightarrow x=y=\frac{2}{3}\)

26 tháng 4 2020

Mình nghĩ đề sửa là:

Cho các số x,y nguyên. Tìm GTM của biểu thức

\(P=\frac{2}{\sqrt{\left(2x+y\right)^3+1}-1}+\frac{2}{\sqrt{\left(x+2y\right)^3+1}-1}+\frac{\left(2x+y\right)\left(x+2y\right)}{4}-\frac{8}{3\left(x+y\right)}\)

Cách làm giống @Thanh Tùng DZ@ nên không trình bày lại