CTR:Số sau không là số chính phương
A=100! + 172003
B=abc + bca + cab
C=33 + 3333 + 333333 + 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng tổng sau không là số chính phương
A = abc + bca + cab
abc và bca và cab là số tự nhiên
A = abc + bca + cab
=> A =( 100a + 10b + c)+ ( 100b + 10c + a)+( 100c + 10a+b )
=>A = 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
=> A = 111a + 111b + 111c
=> A= 111( a+b+c )= 37 . 3( a+b + c)
giả sử A là số chính phương thì A phải chứa thừa số nguyên tố 37 với số mũ chẵn nên
3(a+b+c) chia hết 37
=> a+b+c chia hết cho 37
Điều này không xảy ra vì 1 \(\le\) a + b + c \(\le\) 27
A = abc + bca + cab không phải là số chính phương
\(\frac{7}{4}\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)
=\(\frac{7}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
=\(\frac{7}{4}.33\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
=\(\frac{231}{4}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
=\(\frac{231}{4}\left(\frac{1}{3}-\frac{1}{7}\right)\)
=\(\frac{231}{4}.\frac{4}{21}\)
= 11
\(\dfrac{-7}{4}.\left(\dfrac{33}{12}+\dfrac{3333}{2020}+\dfrac{333333}{303030}+\dfrac{33333333}{42424242}\right)\)
\(=\dfrac{-7}{4}.\left(\dfrac{33}{12}.\dfrac{33.101}{20.101}.\dfrac{33.10101}{30.10101}.\dfrac{33.1010101}{42.1010101}\right)\)
\(=\dfrac{-7}{4}.\left(\dfrac{33}{12}.\dfrac{33}{20}.\dfrac{33}{30}.\dfrac{33}{42}\right)\)
\(=\dfrac{-7}{4}.33.\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\right)\)
\(=\dfrac{-7}{4}.33.\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\right)\)
\(=\dfrac{-7}{4}.33.\left(\dfrac{1}{3}-\dfrac{1}{7}\right)\)
\(=\dfrac{-7}{4}.33.\dfrac{4}{21}\)
\(=33.\dfrac{-1}{3}\)
\(=11\)
tick bạn đi bạn làm cho
tick bạn đi bạn làm cho