K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2019

Đặt \(x^2+10=t\)

\(\Rightarrow t^2-13t+22=0\)

\(\Leftrightarrow t^2-11t-2t+22=0\)

\(\Leftrightarrow t\left(t-11\right)-2\left(t-11\right)=0\)

\(\Leftrightarrow\left(t-11\right)\left(t-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t-2=0\\t-11=0\end{matrix}\right.\)

Tự làm nốt

2 tháng 5 2022

a) Khi \(m=1\) thì pt đã cho trở thành \(x^2-2x-10=0\) (*)

pt (*) có \(\Delta'=\left(-1\right)^2-\left(-10\right)=11>0\) 

Do đó (*) có 2 nghiệm phân biệt \(\left[{}\begin{matrix}x_1=\dfrac{-\left(-1\right)+\sqrt{11}}{1}=1+\sqrt{11}\\x_2=\dfrac{-\left(-1\right)-\sqrt{11}}{1}=1-\sqrt{11}\end{matrix}\right.\)

b) Xét pt đã cho \(x^2-mx-10=0\) \(\left(a=1;b=-m;c=-10\right)\)

Nhận thấy \(ac=1\left(-10\right)=-10< 0\) nên pt đã cho luôn có 2 nghiệm phân biệt \(x_1,x_2\).

Áp dụng hệ thức Vi-ét, ta có \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{-m}{1}=m\\x_1x_2=\dfrac{-10}{1}=-10\end{matrix}\right.\)

Ta có \(x_1^2+x_2^2=29\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=29\Leftrightarrow m^2-2\left(-10\right)=29\)\(\Leftrightarrow m^2+20=29\Leftrightarrow m^2=9\Leftrightarrow m=\pm3\)

Vậy để pt đã cho có 2 nghiệm phân biệt thỏa mãn đề bài thì \(m=\pm3\)

17 tháng 1 2019

Đặt m = 2 x 2  +x -2

Ta có: 2 x 2 + x - 2 2 +10 x 2  +5x -16 =0

⇔  2 x 2 + x - 2 2 +5(2 x 2  +x -2) -6 =0

⇔  m 2  +5m -6 =0

Phương trình  m 2  +5m -6 = 0 có hệ số a = 1, b = 5, c = -6 nên có dạng

a + b + c = 0

Suy ra :  m 1  =1 , m 2  =-6

m1 =1 ta có: 2 x 2  +x -2 =1 ⇔ 2 x 2  +x -3=0

Phương trình 2 x 2  +x -3 = 0 có hệ số a = 2, b = 1 , c = -3 nên có dạng

a +b+c=0

Suy ra:  x 1  =1 , x 2  =-3/2

Với m=-6 ta có: 2 x 2  +x -2 = -6 ⇔ 2 x 2  +x +4 =0

 =  1 2  -4.2.4 = 1 -32 = -31 < 0 . Phương trình vô nghiệm

Vậy phương trình đã cho có 2 nghiệm :  x 1  =1 , x 2  =-32

8 tháng 2 2023

kh hiểu bn ơi

8 tháng 2 2023

vậy mik đăng lại

3 tháng 1 2020

4) Ta có: \(\dfrac{2x-5}{5}-\dfrac{x+3}{3}=\dfrac{2-3x}{2}-x-2\)

\(\Leftrightarrow\dfrac{6\left(2x-5\right)}{30}-\dfrac{10\left(x+3\right)}{30}=\dfrac{15\left(2-3x\right)}{30}-\dfrac{30\left(x+2\right)}{30}\)

\(\Leftrightarrow12x-30-10x-30=30-45x-30x-60\)

\(\Leftrightarrow-22x-60=-75x-30\)

\(\Leftrightarrow-22x+75x=-30+60\)

\(\Leftrightarrow53x=30\)

\(\Leftrightarrow x=\dfrac{30}{53}\)

Vậy: \(S=\left\{\dfrac{30}{53}\right\}\)

5) Ta có: \(\dfrac{5x-3}{6}-\dfrac{7x-1}{4}=5\)

\(\Leftrightarrow\dfrac{2\left(5x-3\right)}{12}-\dfrac{3\left(7x-1\right)}{12}=\dfrac{60}{12}\)

\(\Leftrightarrow10x-6-21x+3=60\)

\(\Leftrightarrow-11x-3=60\)

\(\Leftrightarrow-11x=63\)

\(\Leftrightarrow x=-\dfrac{63}{11}\)

Vậy: \(S=\left\{-\dfrac{63}{11}\right\}\)

28 tháng 2 2021

`9,x^3+x^2-2=0`

`x^3-x^2+2x^2-2=0`

`<=>x^2(x-1)+2(x-1)(x+1)=0`

`<=>(x-1)(x^2+2x+2)=0`

`<=>x=1`

`14,x^2-2x+1=0`

`<=>(x-1)^2=0`

`<=>x-1=0`

`<=>x=1`

`15,x^3+3x^2+3x+1=0`

`<=>(x+1)^3=0`

`<=>x+1=0`

`<=>x=-1`

20 tháng 11 2019

a)

3 · x 2 + x 2 - 2 x 2 + x - 1 = 0 ( 1 )

Đặt  t   =   x 2   +   x ,

Khi đó (1) trở thành :  3 t 2   –   2 t   –   1   =   0   ( 2 )

Giải (2) : Có a = 3 ; b = -2 ; c = -1

⇒ a + b + c = 0

⇒ (2) có hai nghiệm  t 1   =   1 ;   t 2   =   c / a   =   - 1 / 3 .

+ Với t = 1  ⇒   x 2   +   x   =   1   ⇔   x 2   +   x   –   1   =   0   ( * )

Có a = 1; b = 1; c = -1  ⇒   Δ   =   1 2   –   4 . 1 . ( - 1 )   =   5   >   0

(*) có hai nghiệm

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Có a = 3; b = 3; c = 1 ⇒   Δ   =   3 2   –   4 . 3 . 1   =   - 3   <   0

⇒ (**) vô nghiệm.

Vậy phương trình (1) có tập nghiệm Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

b)

x 2 − 4 x + 2 2 + x 2 − 4 x − 4 = 0 ⇔ x 2 − 4 x + 2 2 + x 2 − 4 x + 2 − 6 = 0 ( 1 )

Đặt  x 2   –   4 x   +   2   =   t ,

Khi đó (1) trở thành:   t 2   +   t   –   6   =   0   ( 2 )

Giải (2): Có a = 1; b = 1; c = -6

⇒  Δ   =   1 2   –   4 . 1 . ( - 6 )   =   25   >   0

⇒ (2) có hai nghiệm

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Với t = 2  ⇒   x 2   –   4 x   +   2   =   2

⇔   x 2   –   4 x   =   0

⇔ x(x – 4) = 0

⇔ x = 0 hoặc x = 4.

+ Với t = -3  ⇒   x 2   –   4 x   +   2   =   - 3

⇔ x2 – 4x + 5 = 0 (*)

Có a = 1; b = -4; c = 5  ⇒   Δ ’   =   ( - 2 ) 2   –   1 . 5   =   - 1   <   0

⇒ (*) vô nghiệm.

Vậy phương trình ban đầu có tập nghiệm S = {0; 4}.

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Khi đó (1) trở thành:  t 2   –   6 t   –   7   =   0   ( 2 )

Giải (2): Có a = 1; b = -6; c = -7

⇒ a – b + c = 0

⇒ (2) có nghiệm  t 1   =   - 1 ;   t 2   =   - c / a   =   7 .

Đối chiếu điều kiện chỉ có nghiệm t = 7 thỏa mãn.

+ Với t = 7 ⇒ √x = 7 ⇔ x = 49 (thỏa mãn).

Vậy phương trình đã cho có nghiệm x = 49.

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇔   t 2   –   10   =   3 t   ⇔   t 2   –   3 t   –   10   =   0   ( 2 )

Giải (2): Có a = 1; b = -3; c = -10

⇒   Δ   =   ( - 3 ) 2   -   4 . 1 . ( - 10 )   =   49   >   0

⇒ (2) có hai nghiệm:

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cả hai nghiệm đều thỏa mãn điều kiện xác định.

Vậy phương trình đã cho có tập nghiệm Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Bài 6: 

1) Ta có: \(2x\left(x-5\right)-\left(x+3\right)^2=3x-x\left(5-x\right)\)

\(\Leftrightarrow2x^2-10x-\left(x^2+6x+9\right)=3x-5x+x^2\)

\(\Leftrightarrow2x^2-10x-x^2-6x-9-3x+5x-x^2=0\)

\(\Leftrightarrow-14x-9=0\)

\(\Leftrightarrow-14x=9\)

\(\Leftrightarrow x=-\dfrac{9}{14}\)

Vậy: \(S=\left\{-\dfrac{9}{14}\right\}\)

28 tháng 2 2021

`1)2x(x-5)-(x+3)^2=3x-x(5-x)`

`<=>2x^2-10x-x^2-6x-9=3x-5x+x^2`

`<=>x^2-16x-9=x^2-2x`

`<=>14x=-9`

`<=>x=-9/14`

5 tháng 1 2020

b) 2 x 2  + x + 10 = 0

Ta có: a = 2; b = 1; c = 10

Δ = b 2  - 4ac = 1 2  - 4.2.10 = -79 < 0

⇒ Phương trình đã cho vô nghiệm.

29 tháng 6 2019

Đáp án D

T a   c ó :   - 10 x 2   +   40   =   0     ⇔   - 10 x 2   =   -   40   ⇔   x 2   =   4     ⇔   x   =   ± 2