Tính tích phân \(I=\int_{-2}^2\frac{x^{2018}}{e^x+1}dx\).
A. \(I=0\)
B. \(I=\frac{2^{2020}}{2019}\)
C. \(I=\frac{2^{2019}}{2019}\)
D. \(I=\frac{2^{2018}}{2018}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài của bạn không rõ ràng. Nhưng chắc link này sẽ hữu ích với bạn.
Câu hỏi của Nguyễn Thị Yến Nhi - Toán lớp 6 | Học trực tuyến
Đặt \(\left\{{}\begin{matrix}2018-x=a\\x-2019=b\end{matrix}\right.\) \(\Rightarrow a+b=-1\Rightarrow b=-1-a\)
\(\frac{a^2+ab+b^2}{a^2-ab+b^2}=\frac{19}{49}\Leftrightarrow49\left(a^2+ab+b^2\right)=19\left(a^2-ab+b^2\right)\)
\(\Leftrightarrow15a^2+34ab+15b^2=0\)
\(\Leftrightarrow\left(5a+3b\right)\left(3a+5b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5a=-3b\\3a=-5b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}5a=-3\left(-1-a\right)\\3a=-5\left(-1-a\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2a=3\\2a=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{3}{2}\\a=-\frac{5}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2018-x=\frac{3}{2}\\2018-x=-\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{4033}{2}\\x=\frac{4041}{2}\end{matrix}\right.\)
a)
⇒ \(\frac{11x-1}{4}=\frac{10}{4}\)
⇒ 11x - 1 = 10
11x = 10 + 1 = 11
x = 11 : 11 = 1
b)
\(\left[{}\begin{matrix}3x-6=0\\\frac{x}{9}-\frac{1}{3}=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}3x=0+6\\\frac{x}{9}=0+\frac{1}{3}\end{matrix}\right.\)⇒ \(\left[{}\begin{matrix}3x=6\\\frac{x}{9}=\frac{1}{3}\end{matrix}\right.\)⇒ \(\left[{}\begin{matrix}x=6:3\\\frac{x}{9}=\frac{3}{9}\end{matrix}\right.\)⇒\(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy x = 2 hoặc x = 3
c)
\(M=c\left(\frac{5}{7}+\frac{7}{14}-\frac{17}{14}\right)\)
\(M=c\left(\frac{10}{14}+\frac{7}{14}-\frac{17}{14}\right)\)
\(M=\left(\frac{2018}{2019}-\frac{2019}{2020}\right).0\)
M = 0
d)
\(N=\frac{-7}{13}+2-\frac{19}{13}+\frac{2020}{2018}.\frac{2018}{202}\)
\(N=\left(\frac{-7}{13}-\frac{19}{13}\right)+2+10\)
N = \(-2+2+10\)
N = 10
B= 1/1.2+1/2.3+...+1/2019.2020
B=1/1-1/2+1/2-1/3+...+1/2019-1/2020
B=1-1/2020=2020/2020-1/2020=2019/2020
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1.\)
Với : \(a=2^{2018};.b=3^{2019};,c=5^{2020}.\)
Và : \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\Leftrightarrow\)
\(B=1-\frac{1}{2020}< 1< A\)
Đặt \(t=-x\Rightarrow dx=-dt\)
\(I=\int\limits^{-2}_2\frac{t^{2018}}{e^{-t}+1}\left(-dt\right)=\int\limits^2_{-2}\frac{e^t.t^{2018}}{e^t+1}dt=\int\limits^2_{-2}\frac{e^x.x^{2018}}{e^x+1}dx\)
\(\Rightarrow I+I=\int\limits^2_{-2}\frac{x^{2018}+e^x.x^{2018}}{e^x+1}dx=\int\limits^2_{-2}x^{2018}dx=\frac{2.2^{2019}}{2019}\)
\(\Rightarrow I=\frac{2^{2019}}{2019}\)
Cảm ơn bạn rất nhiều !