K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nguyễn Châu Tuấn Kiệt ông có thể giúp tui bài này đc ko

19 tháng 3 2019

bài này tôi đăng lên rroif mà chẳng ai bít mà trả lời

19 tháng 3 2019

                                  Giải

Ta có: \(a^b=b^c=c^a\)

\(\Leftrightarrow a=b=c\)

\(\Leftrightarrow M=1^{2016}-1^{2017}\)

\(\Leftrightarrow M=1-1\)

\(\Leftrightarrow M=0\)

Ta có \(a^b=b^c=c^a\left(1\right)\)

Giả sử \(a>b\left(2\right)\)

Thì từ \(\left(1\right)\left(2\right)\Rightarrow b< c;c>a;a< b\)(mâu thuẫn)

Chứng minh tương tự ta được điều \(a< b\)là sai do đó \(a=b\)

Do đó \(a=b=c\)

Tự tính tiếp...

Giải thích phần suy ra từ (1)(2)

Như bạn biết nếu hai lũy thừa bằng nhau mà lũy thừa nào có cơ số cao hơn thì lũy thừa ấy có số mũ thấp hơn lũy thừa còn lại 

VD:2^4=4^2.4^2 có cơ số là 4>2 nên số mũ của nó bé hơn 

17 tháng 5 2018

Đặt \(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=k\)

\(\Rightarrow a=2014k;b=2015k;c=2016k\)

\(\Rightarrow4(a-b)(b-c)=4(2014k-2015k)(2015k-2016k)\)

\(\Rightarrow4\cdot k(2014-2015)\cdot k(2015-2016)=4\cdot k\cdot(-1)\cdot k\cdot(-1)=4\cdot k^2\)

\(\Rightarrow(c-a)(c-a)=(c-a)^2=(2016k-2014k)=[k(2016-2014)]^2=(k\cdot2)^2=k^{2\cdot4}\)

Rồi tự suy ra đấy

Bạn Namikaze Minato làm đúng rồi đấy

17 tháng 5 2018

\(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=\frac{a-b}{2014-2015}\)

\(=\frac{b-c}{2015-2016}=\frac{c-a}{2016-2014}\)

\(=\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)

\(\Rightarrow a-b=-\frac{c-a}{2};b-c=-\frac{c-a}{2}\)

do đó: \(\left(a-b\right)\left(b-c\right)=\frac{\left(c-a\right)^2}{4}\)

\(\Rightarrow M=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2=0\)

25 tháng 2 2021

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{c+a+b}=1\)

Do đó: \(\frac{a+b-c}{c}=1\)\(\Rightarrow a+b-c=c\)\(\Rightarrow a+b+c=3c\)  (1)

\(\frac{b+c-a}{a}=1\)\(\Rightarrow b+c-a=a\)\(\Rightarrow b+c+a=3a\) (2)

\(\frac{a+c-b}{b}=1\)\(\Rightarrow a+c-b=b\)\(\Rightarrow a+c+b=3b\) (3)

Từ (1), (2), (3) \(\Rightarrow3a=3b=3c\)\(\Rightarrow a=b=c\)

Ta có: \(T=\left(10+\frac{b}{a}\right)\left(4+\frac{2c}{b}\right)\left(2017+\frac{3a}{c}\right)\)

\(=\left(10+\frac{a}{a}\right)\left(4+\frac{2c}{c}\right)\left(2017+\frac{3a}{a}\right)\)

\(=\left(10+1\right)\left(4+2\right)\left(2017+3\right)\)

\(=11.6.2020=133320\)

p/s: làm thế này đúng không ta, mình hong chắc lắm

5 tháng 11 2017

a) 9x2 - 36

=(3x)2-62

=(3x-6)(3x+6)

=4(x-3)(x+3)

b) 2x3y-4x2y2+2xy3

=2xy(x2-2xy+y2)

=2xy(x-y)2

c) ab - b2-a+b

=ab-a-b2+b

=(ab-a)-(b2-b)

=a(b-1)-b(b-1)

=(b-1)(a-b)

P/s đùng để ý đến câu trả lời của mình

27 tháng 12 2018

dễ!Ta có:

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a+a-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a}{\left(a-b\right)\left(a-c\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}+\frac{1}{c-a}\)

Chứng minh tương tự,Ta được:

\(\hept{\begin{cases}\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{a-b}+\frac{1}{b-c}\\\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}+\frac{1}{b-c}\end{cases}}\)

\(\Rightarrow\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-a\right)\left(b-c\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2013\)\(\Rightarrow\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}=\frac{2013}{2}\)

Xong!