K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

câu b:
[​IMG]AFB và [​IMG]AEC có:
góc BAC chung
góc AFB=góc AEC= 90 độ
vậy [​IMG]AFB [​IMG] [​IMG]AEC(G.G)
\RightarrowBF/CE=AB/AC
mà AB<AC(gt) nên BF<CE
câu c:
vì [​IMG]AFB [​IMG] [​IMG]AEC(cmt) nên
AF/AE=AB//AC
\RightarrowAF/AB=AE/AC
xét [​IMG]AFE và [​IMG]ABC có
góc BAC chung
AF/AB=AE/AC
vậy [​IMG]AFE [​IMG] [​IMG]ABC(g.c.g)

18 tháng 3 2022

Xét  ∆AHE và ∆BHD, ta có
<D=<E=90° 
<BHD=<EHA ( đối đỉnh)
⟹ ∆AHE ∼∆BHD(g.g)
⟹HA/HB=HE/HD⟹ HA*HD=HB*HE

21 tháng 9 2023

Tham khảo:

+) Xét tam giác HBC ta có :

HD vuông góc với BC \( \Rightarrow \) HD là đường cao tam giác HBC

BF vuông góc với HC tại F ( kéo dài HC ) \( \Rightarrow \)BF là đường cao của tam giác HBC

CE vuông góc với HB tại E ( kéo dài HB ) \( \Rightarrow \)CE là đường cao của tam giác HBC

Ta kéo dài HD, BF, CE sẽ cắt nhau tại A

\( \Rightarrow \) A là trực tâm tam giác HBC

 

+) Xét tam giác HAB ta có :

HF vuông góc với AB \( \Rightarrow \) HF là đường cao tam giác HAB

BH vuông góc với AE tại E ( kéo dài HB ) \( \Rightarrow \)AE là đường cao của tam giác HAB

BD vuông góc với AH tại D ( kéo dài AH ) \( \Rightarrow \)BD là đường cao của tam giác HAB

Ta kéo dài HF, BD, AE sẽ cắt nhau tại C

\( \Rightarrow \) C là trực tâm tam giác HAB

 

+) Xét tam giác HAC ta có :

HE vuông góc với AC \( \Rightarrow \) HE là đường cao tam giác HAC

AF vuông góc với HC tại F ( kéo dài HC ) \( \Rightarrow \)AF là đường cao của tam giác HAC

CD vuông góc với AH tại D ( kéo dài AH ) \( \Rightarrow \)CD là đường cao của tam giác HAC

Ta kéo dài CD, HE, AF sẽ cắt nhau tại B

\( \Rightarrow \) B là trực tâm tam giác HAC.

a, 

Ta có ON // BH ( cùng vuông góc với AC )

OM // AH ( cùng vuông góc với BC )

MN // AB ( MN là đường trung bình của tam giác ABC )

Vậy tam giác OMN đồng dạng với tam giác HAB.

b,

Xét tam giác AHG và MOG có :

\(+,\widehat{HAG}=\widehat{OMG}\)( Do AH // OM )

\(+,\frac{OM}{AH}=\frac{MN}{AB}=\frac{1}{2}=\frac{GM}{GA}\)( DO 2 TAM GIÁC ĐỒNG DẠNG Ở CÂU a, )

Từ đó ta có tam giác AHG đồng dạng với tam giác MOG(c.g.c) nên \(\frac{OG}{HG}=\frac{MG}{MA}=\frac{1}{2}\)

Và \(\widehat{HGO}=\widehat{HGA}+\widehat{AGO}=\widehat{OGM}+\widehat{AGO}=\widehat{AGM}=180^0\)

\(\Rightarrow H,G,O\)thẳng hàng

Xét ΔABD vuông tại D và ΔCHD vuông tại D có

góc BAD=góc HCD

=>ΔABD đồng dạng vớiΔCHD

9 tháng 2 2018

+ ) Ta thấy ngay hai tam giác vuông AHC và ANC có chung cạnh huyền AC nên A, H, N, C cùng thuộc đường tròn đường kính AC.

\(\Rightarrow\widehat{HNA}=\widehat{HCA}\) (Hai góc nội tiếp cùng chắn cung AH)

Ta thấy ngay hai tam giác vuông AMB và AHB có chung cạnh huyền AB nên A, M, H, B cùng thuộc đường tròn đường kính AB.

\(\Rightarrow\widehat{HMN}=\widehat{ABH}\) (Góc ngoài tại đỉnh đối diện bằng góc trong tại đỉnh)

Vậy nên \(\Delta ABC\sim\Delta HMN\left(g-g\right)\)

+) Ta có \(\widehat{ADC}=\widehat{ABC}\)  (Hai góc nội tiếp cùng chắn cung AC)

Mà \(\Delta ABC\sim\Delta HMN\Rightarrow\widehat{ABC}=\widehat{HMN}\) 

nên \(\widehat{ADC}=\widehat{HMN}\)

Chúng lại ở vị trí so le trong nên DC // HM

Ta có \(DC\perp AC\Rightarrow HM\perp AC\)

Gọi J là trung điểm AB

Ta có ngay IJ là đường trung bình tam giác ABC nên IJ // AC

Vậy nên \(HM\perp IJ\)

Mà J là tâm đường tròn ngoại tiếp tứ giác AMHB nên IJ vuông góc cung HM tại trung điểm HM hay IJ là trung trực của HM.

Vậy thì IM = IH.

Tương tự ta có IM = IH = IN hay I là tâm đường tròn ngoại tiếp tam giác HMN.

11 tháng 2 2018

ad dqi

19 tháng 9 2018

Trong hình bên có 3 cặp tam giác đồng dạng là BHA và BAC; CHA và CAB; HAB và HCA.