K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2019

Áp dụng định lý dường phan giác, ta có

\(\frac{AB}{BD}=\frac{AC}{DC}=\frac{AB+AC}{BD+DC}=\frac{AB+AC}{BC}\)\(=\frac{6+7}{8}=\frac{13}{8}\)

<=> \(\frac{6}{BD}=\frac{7}{DC}=\frac{13}{8}\)

*\(\frac{6}{BD}=\frac{13}{8}\)<=>\(BD=\frac{6\cdot8}{13}=\frac{42}{13}cm\)

\(\frac{7}{DC}=\frac{13}{8}\)<=> \(DC=\frac{7\cdot8}{13}=\frac{56}{13}cm\)

Kết bạn với mk nha :)

17 tháng 2 2017

Giải 

a) Vì AD là phân giác của góc BAC nên theo tính chất của đường phân giác có :\(\frac{AB}{AC}=\frac{BD}{CD}\)

Mà AB = 6cm , AC = 8cm nên thay vào ta được : \(\frac{6}{8}=\frac{BD}{CD}hay\frac{BD}{6}=\frac{CD}{8}\)

Theo tính chất của dãy tỉ sỗ bằng nhau ta có :

\(\frac{BD}{6}=\frac{CD}{8}=\frac{BD+CD}{^{6+8}}=\frac{10,5}{14}=\frac{3}{4}\)

=> BD = (3.6):4 =4,5 cm và CD = 10,5 - 4,5 = 6cm 

Vậy BD = 4,5cm ; CD = 6cm 

Sorry , mình chưa nghĩ ra ý B .

AH
Akai Haruma
Giáo viên
2 tháng 3 2021

Lời giải: Đề bài có vẻ thừa dữ kiện.

Theo tính chất tia phân giác:

a)

$\frac{S_{ADB}}{S_{ADC}}=\frac{BD}{DC}=\frac{6}{4,5}=\frac{4}{3}$

b) 

$\frac{S_{ADB}}{S_{ADC}}=\frac{BD}{DC}=\frac{BC-DC}{DC}=\frac{7-3}{3}=\frac{4}{3}$

9 tháng 5 2023

loading...  

a) Do AD là phân giác của ∠A

⇒ DB/DC = 8/6 = 4/3

b) Xét hai tam giác vuông: ∆AHB và ∆CHA có:

∠HAB = ∠HCA (cùng phụ ∠B)

⇒ ∆AHB ∽ ∆CHA (g-g)

⇒ AH/CH = AB/CA

9 tháng 5 2023

loading...  

a) Do AD là phân giác của ∠A

⇒ DB/DC = 8/6 = 4/3

b) Xét hai tam giác vuông: ∆AHB và ∆CHA có:

∠HAB = ∠HCA (cùng phụ ∠B)

⇒ ∆AHB ∽ ∆CHA (g-g)

⇒ AH/CH = AB/CA

a: DB/DC=AB/AC=4/3

b: Sửa đề: AH/CA=AB/BC

\(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot AB\cdot AC\)

=>AH*BC=AB*AC

=>AH/AC=AB/CB

a) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{6}{4.5}=\dfrac{8}{BD}\)

\(\Leftrightarrow BD=\dfrac{8\cdot4.5}{6}=\dfrac{36}{6}=6\left(cm\right)\)

Vậy:BD=6cm

b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{8}{BD}=\dfrac{6}{CD}\)

mà BD+CD=BC(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{8}{BD}=\dfrac{6}{CD}=\dfrac{8+6}{BD+CD}=\dfrac{14}{BD}=\dfrac{14}{7}=2\)

Do đó:

\(\dfrac{6}{CD}=2\)

hay CD=3(cm)

Vậy: CD=3cm

20 tháng 2 2022

bạn cần bài nào

20 tháng 2 2022

2 BÀI CHẢ BT HỎI BÀI NÀO

15 tháng 8 2021

mọi người giúp e với ạ e đg cần gấp

15 tháng 8 2021

a)Ta có: 62+82=102

   ⇒  AB2+AC2=BC2

  ⇒ ΔABC vuông tại A (Py-ta-go đảo)

b)Ta có:\(AB^2=BD.BC\Leftrightarrow BD=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6cm\) (hệ thức lượng)

  Ta có: \(AC^2=CD.BC\Leftrightarrow CD=\dfrac{AC^2}{BC}=\dfrac{8^2}{10}=6,4cm\) (HTL)

  Ta có: \(AD.BC=AB.AC\Leftrightarrow AD=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8cm\) (HTL)

c)Vì P là hình chiếu của D trên AB

  ⇒DP⊥AB \(\Rightarrow\widehat{APD}=90^o\)

Xét ΔAPD và ΔADB có:

       \(\widehat{A}:chung\)

       \(\widehat{APD}=\widehat{ADB}=90^o\)

⇒ ΔAPD ∼ ΔADB (g-g)

 \(\Rightarrow\dfrac{AP}{AD}=\dfrac{AD}{AB}\Rightarrow AP.AB=AD^2\) (1)

Chứng minh tương tự,ta có: ΔADQ ∼  ΔACD (g-g)

                                      \(\Rightarrow\dfrac{AD}{AC}=\dfrac{AQ}{AD}\Rightarrow AC.AQ=AD^2\) (2)

Ta có: AD2 = BD.CD (HTL)   (3)

Từ (1)(2)(3)⇒AP.AB=AC.AQ=BD.CD=AD2

d)Xét tg APDQ có: \(\widehat{DPA}=\widehat{PAQ}=\widehat{AQD}=90^o\)

  ⇒ APDQ là hình chữ nhật

  ⇒ AD=PQ và \(\widehat{PDQ}=90^o\)

Ta có: AP.BP=DP2 (HTL trong ΔADB)

          AQ.CQ=DQ2 (HTL trong ΔADC)

⇒ AP.BP+AQ.CQ=DP2+DQ2=PQ2 (Py-ta-go trong ΔPDQ vuông tại D)

Mà PQ=AD ⇒ AP.BP+AQ.CQ=AD2

e) Ta có: PQ=AD (cmt)

Mà AD = 4,8 cm

⇒ PQ = 4,8 cm

 

 

28 tháng 3 2022

Xét ΔABC vuông ở A, theo định lý Pi-ta-go ta được :

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

Ta có : AD là phân giác \(\widehat{BAC}\)

\(\Rightarrow\dfrac{BD}{DC}=\dfrac{AB}{AC}\)

hay \(\dfrac{BD}{DC}=\dfrac{6}{8}\)

\(\Rightarrow\dfrac{BD}{6}=\dfrac{DC}{8}=\dfrac{BD+DC}{6+8}=\dfrac{10}{14}=\dfrac{5}{7}\)

\(\Rightarrow BD=\dfrac{5}{7}.6=\dfrac{30}{7}\left(cm\right)\)

\(\Rightarrow DC=\dfrac{5}{7}.8=\dfrac{40}{7}\left(cm\right)\)

28 tháng 3 2022

Hình bạn tự kẻ nhé!

Xét tam giác ABC vuông tại A có:

             AB2 + AC2 = BC2      ( định lý Pytago )

=>              62 + 8= BC2

<=>            36 + 64 = BC2

<=>                  100 = BC2

<=>                   BC = 10 (cm)       ( vì BC > 0 )

Xét tam giác ABC có: BD là đường pg của tam giác ABC

 =>              DA / DC = AB / BC

 => DA / ( DA + DC ) = AB/ ( BC + AB )

<=>              DA / AC = 3/8

<=>                AD / 8  = 3/8

 <=>                     AD = 3 (cm)

Vậy AD = 3 cm.