Cho tam giác ABC vuông tại A có AH là đường cao
a) Chứng minh: AB^2=BH.BC
b) Tia phân giác của góc B cắt AH tại D và cắt AC tại E.Chứng minh tam giác ADB đồng dạng với tam giác CED
c) Tam giác ADE là hình gì vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét Δ HBA và Δ ABC:
\(\widehat{H}=\widehat{A}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) Δ HBA \(\sim\) Δ ABC (g.g)
Ta có: Δ HBA \(\sim\) Δ ABC
\(\dfrac{BA}{BC}=\dfrac{HB}{AB}\)
\(\Rightarrow AB^2=BH.BC\)
Ta có: \(\widehat{HAC}+\widehat{C}=90^0\)
mà \(\widehat{HAC}+\widehat{BAH}\) = 900
\(\Rightarrow\widehat{C}=\widehat{BAH}\)
Do E là đường phân giác \(\widehat{B}\)
\(\Rightarrow\widehat{ABE}=\widehat{EBC}\) hay \(\widehat{ABD}=\widehat{EBC}\)
Xét Δ ADB và Δ CEB:
\(\widehat{C}=\widehat{BAH}\)
\(\widehat{ABD}=\widehat{EBC}\)
\(\Rightarrow\) Δ ABD \(\sim\) Δ CEB (g.g)
c. Ta có: \(\widehat{AEB}=\widehat{ADE}\) hay \(\widehat{AED}=\widehat{ADE}\)
\(\Rightarrow\) Δ ADE là tam giác cân tại A
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
Do đó: ΔABC\(\sim\)ΔHBA
Suy ra: AB/HB=BC/BA
=>BH/AB=BC/BA(1)
hay \(AB^2=BH\cdot BC\)
Câu b đề sai rồi bạn
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
DO đó: ΔABC\(\sim\)ΔHBA
Suy ra: AB/HB=BC/BA
hay \(AB^2=HB\cdot BC\)
b: \(\widehat{BMH}+\widehat{HBM}=90^0\)
\(\widehat{BNA}+\widehat{ABN}=90^0\)
mà \(\widehat{ABN}=\widehat{HBM}\)
nên \(\widehat{BMH}=\widehat{BNA}\)
a)C/m AB2=BH.BC
Xét 2 tam giác vuông ABH và CBA có
góc B chung
=>tam giác ABH đồng fạng với tám giác CBA(g.g)
\(\Rightarrow\)\(\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow\)\(AB.AB=BH.BC=AB^2=BH.BC\)
Xét tam giác ABH và CBA,có:
góc BHA = góc CHA =90'
góc B chung
=>tam giác ABH đồng dạng CBA(g.g)
=>AB/BH=BC./AB
=>2AB=BH.BC