K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2015

????????????????????????????????????

19 tháng 11 2015

Ai tick mk lên 30 -> 40 điểm mk tick cho cả tháng 

27 tháng 2 2018

1. Ta có : |3-x|=3-x nếu 3-x> hoặc =0 hay x> hoặc =3; |3-x|=x-3 nếu 3-x<0 hay x<3

Th1: Với x > hoặc =3 thì ta có:3-x=1-3x=>1-3x+x=3=>1-2x=3=>2x=-2=>x=-1(loại vì không thỏa mãn điều kiện x>3)

Th2: với x<3 thì ta có: x-3=1-3x=>x-1+3x=3=>4x=4=>x=1(thỏa mãn điều kiện x<3)

vậy x=1

5 tháng 7 2015

Ta có:

\(8^{102}-2^{102}\) = \(\left(8^4\right)^{51}-\left(2^4\right)^{51}\)

Vì \(8^4\)và \(2^4\)có hàng đv là 6 nên \(\left(8^4\right)^{51}\)và \(\left(2^4\right)^{51}\)cũng có hàng đv là 6.

=> \(\left(8^4\right)^{51}-\left(2^4\right)^{51}\)có hàng đv là 0.

=> \(8^{102}-2^{102}\)chia hết cho  10

5 tháng 7 2015

Bạn xem lại đề, phải là chia hết cho 19. Có thể tìm thấy 1 ví dụ trái với đề bài.

2 tháng 8 2021

a) \(3^{10}+3^{11}+3^{12}\)

⇔ \(3^{10}\left(1+3+3^2\right)\)

⇔  \(3^{10}.13\) 

⇒   \(3^{10}.13\)  chia hết cho 13

11 tháng 7 2018

a, \(n^2+n=n\left(n+1\right)\)

Vì n(n+1) là tích 2 số tự nhiên liên tiếp nên \(n\left(n+1\right)⋮2\)

Vậy ...

b, \(a^2b+b^2a=ab\left(a+b\right)\)

Nếu a chẵn, b lẻ thì \(ab\left(a+b\right)⋮2\)

Nếu a lẻ, b chẵn thì \(ab\left(a+b\right)⋮2\)

Nếu a,b cùng chẵn thì \(ab⋮2\Rightarrow ab\left(a+b\right)⋮2\)

Nếu a,b cùng lẻ thì \(a+b⋮2\Rightarrow ab\left(a+b\right)⋮2\)

c, \(51^n+47^{102}=\overline{...1}+47^{100}.47^2=\overline{...1}+\left(47^4\right)^{25}.47^2=\overline{...1}+\overline{...1}^{25}\cdot.\overline{...9}=\overline{...1}+\overline{...9}=\overline{...0}⋮10\)

11 tháng 7 2018

a) Gọi 5 số tự nhiên đó là a; a+1; a+2; a+3;a+4

Tổng 5 số đó là a + a+1 + a+2 + a+3 + a+4

= (a+a+a+a+a) + (1+2+3+4)

= 5a + 10

= 5(a+2) chia hết cho 5

Vậy tổng của 5 số tự nhiên chia hết cho 5

6 tháng 1 2020

\(8^{102}-2^{102}=\left(8^{51}-2^{51}\right)\left(8^{51}+2^{51}\right)\equiv\left(8^{51}-2^{51}\right).\left(8+2\right)\equiv\left(8^{51}-2^{51}\right).10\equiv0\left(mod10\right)\)

6 tháng 1 2020

Ta có : 8102=82.(84)25=64.\(\left(\overline{...6}\right)\)=\(\overline{...4}\)

            2102=22.(24)25=4.\(\left(\overline{...6}\right)\)=\(\overline{...4}\)

\(\Rightarrow8^{102}-2^{102}=\left(\overline{...4}\right)-\left(\overline{...4}\right)=\overline{...0}⋮10\)

Vậy 8102-2102\(⋮\)10.

14 tháng 11 2015

bạn hãy vào câu hỏi tương tự đó mà tìm

14 tháng 11 2015

bạn tham khỏa câu hỏi tương tự nhé