Cho hai đường thẳng (d1): y=mx+m và (d2): \(y=\frac{-1}{m}x+\frac{1}{m}\). Gọi I(x0;y0) là giao điểm của hai đường thẳng đó. Tính \(T=x0^2+y0^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Giao điểm của 2 đường thẳng thuộc trục hoành nên có dạng $(a,0)$. Vì điểm này thuộc $(d_1):x+y=-1$ nên $a+0=-1\Rightarrow a=-1$
Vậy giao điểm của 2 ĐT trên là $(-1,0)$
Giao điểm này $\in (d_2)$ khi mà $m.(-1)+0=1$
$\Leftrightarrow m=-1$
Giải
Đường thẳng( d1 ) : y = -mx + m + 1 có a1 = -m
Đường thẳng ( d2 ) : y =\(\frac{1}{m}x-1-\frac{5}{m}\)có a2 = \(\frac{1}{m}\)
Ta có : a1.a2 = ( -m ) . \(\frac{1}{m}\)=-1 .Vậy ( d1 ) và ( d2 ) vuông góc với nhau với mọi giá trị của tham số m khác 0 => đpcm
Với m = 2 thì d 1 : y = 2x + 3; d 2 : y = x + 1
Tập xác định của hàm số R
Bảng giá trị
x | 0 | - 1 |
y = 2x + 3 | 3 | 1 |
x | 0 | - 1 |
y = x + 1 | 1 | 0 |
Gọi A ( x 0 ; y 0 ) là tọa độ giao điểm của d1 và d2
Khi đó:
( y 0 = 2 x 0 + 3 và y 0 = x 0 + 1
⇒ 2xo + 3 = x 0 + 1 ⇔ x 0 = -2
⇒ y 0 = x 0 + 1 = -2 + 1 = -1
Vậy tọa độ giao điểm của d 1 và d 2 là (-2; -1)
a)
\(\left(d1\right):y=mx+m-3=m\left(x+1\right)-3\Rightarrow\left\{\begin{matrix}x=-1\\y=-3\end{matrix}\right.\) với mọi m:
ĐIểm cố dịnh là A(-1,-3)
\(\left(d1\right):y=\dfrac{1}{m}x+\dfrac{1-m}{m}=\dfrac{1}{m}\left(x+1\right)-1\Rightarrow voi..x=-1...thi...y=-1...voi..\forall m\ne0\)
ĐIểm cố định B(-1,-1)
\(d_1:mx+y=3m-1.\\ \Leftrightarrow-mx+3m-1=y.\)
\(d_2:x+my=m+1.\\ \Leftrightarrow my=-x+m+1.\\\Leftrightarrow y=\dfrac{-x}{m}+\dfrac{m}{m}+\dfrac{1}{m}.\Leftrightarrow y=-\dfrac{1}{m}x+1+\dfrac{1}{m}.\)
Thay m = 2 vào phương trình đường thẳng d1 ta có:
\(-2x+3.2-1=y.\\ \Leftrightarrow-2x+5=y.\)
Thay m = 2 vào phương trình đường thẳng d2 ta có:
\(y=-\dfrac{1}{2}x+1+\dfrac{1}{2}.\\ \Leftrightarrow y=\dfrac{-1}{2}x+\dfrac{3}{2}.\)
Xét phương trình hoành độ giao điểm của d1 và d2 ta có:
\(-2x+5=\dfrac{-1}{2}x+\dfrac{3}{2}.\\ \Leftrightarrow\dfrac{-3}{2}x=-\dfrac{7}{2}.\\ \Leftrightarrow x=\dfrac{7}{3}.\)
\(\Rightarrow y=\dfrac{1}{3}.\)
Tọa độ giao điểm của d1 và d2 khi m = 2 là \(\left(\dfrac{7}{3};\dfrac{1}{3}\right).\)
b: Phương trình hoành độ giao điểm là:
x+1=-x+3
\(\Leftrightarrow2x=2\)
\(\Leftrightarrow x=1\)
hay y=2
Phương trình hoành độ giao điểm:
\(mx_0+m=\dfrac{-1}{m}x_0+\dfrac{1}{m}\) (ĐK: \(m\ne0\))
\(m^2x_0+m^2=-x_0+1\)
\(x_0\left(m^2+1\right)=1-m^2\)
\(x_0=\dfrac{1-m^2}{m^2+1}\) (1)
Mà theo (d1): \(y_0=mx_0+m\)
Suy ra: \(y_0=m.\dfrac{1-m^2}{m^2+1}+m\)
\(y_0=\dfrac{m-m^3+m^3+m}{m^2+1}\)
\(y_0=\dfrac{2m}{m^2+1}\) (2)
Thế (1) và (2) vào T ta được:
\(T=\left(\dfrac{1-m^2}{m^2+1}\right)^2+\left(\dfrac{2m}{m^2+1}\right)^2\)
\(T=\dfrac{m^4-2m^2+1+4m^2}{m^4+2m^2+1}\)
\(T=1\)