tìm max hoặc min a=2x^2-4x+7/x^2-2x+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2x+3y}{2x+y+2}\)
\(\Leftrightarrow A\left(2x+y+2\right)=2x+3y\)
\(\Leftrightarrow2A=2x\left(1-A\right)+y\left(3-A\right)\)
\(\Leftrightarrow\left(2A\right)^2=\left(2x\left(1-A\right)+y\left(3-A\right)\right)^2\le\left(4x^2+y^2\right)\left(\left(1-A\right)^2+\left(3-A\right)^2\right)\)
\(\Leftrightarrow\left(2A\right)^2\le\left(\left(1-A\right)^2+\left(3-A\right)^2\right)\)
\(\Leftrightarrow-5\le A\le1\)
1/ \(x^2-2x+7\)
\(=x^2-\frac{1}{2}\cdot2x+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+7\)
\(=x^2-\frac{1}{2}\cdot2x+\left(\frac{1}{2}\right)^2-\frac{1}{4}+7\)
\(=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}+7\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{27}{4}\)
Có \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{27}{4}\ge\frac{27}{4}\)
\(\Rightarrow GTNNx^2-2x+7=\frac{27}{4}\)
với \(\left(x-\frac{1}{2}\right)^2=0;x=\frac{1}{2}\)
2/ \(4x^2+2x+9\)
\(=\left(2x\right)^2+2\cdot2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+9\)
\(=\left(2x+\frac{1}{2}\right)^2-\frac{1}{4}+9\)
\(=\left(2x+\frac{1}{2}\right)^2+\frac{35}{4}\)
có \(\left(2x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(2x+\frac{1}{2}\right)^2+\frac{35}{4}\ge\frac{35}{4}\)
\(\Rightarrow GTNN4x^2+2x+9=\frac{35}{4}\)
với \(\left(2x+\frac{1}{2}\right)^2=0;x=-\frac{1}{4}\)