(2x3-5x2+6x-15):(2x-5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\left(2x^3-x^2+x+4x^2-2x+2-x+1\right):\left(2x^2-x+1\right)\\ =\left[x\left(2x^2-x+1\right)+2\left(2x^2-x+1\right)-x+1\right]:\left(2x^2-x+1\right)\\ =x+2\left(\text{dư }-x+1\right)\\ b,=\left[x^2\left(2x-5\right)+3\left(2x-5\right)\right]:\left(2x-5\right)\\ =x^2+3\)
\(1,=\left(x^2+3\right)\left(2x-5\right):\left(2x-5\right)=x^2+3\left(A\right)\\ 2,\)
Vì MNPQ là hbh nên MP//QN \(\Rightarrow\widehat{M}+\widehat{N}=180^0\Rightarrow\widehat{N}=\dfrac{180^0-26^0}{2}=77^0\)
Mà MNPQ là hbh nên \(\widehat{Q}=\widehat{N}=77^0\left(B\right)\)
\(\left(1-x\right)\left(5x+3\right)=\left(3x-7\right)\left(x-1\right)\)
\(< =>\left(1-x\right)\left(5x+3+3x-7\right)=0\)
\(< =>\left(1-x\right)\left(8x-4\right)=0\)
\(< =>\orbr{\begin{cases}1-x=0\\8x-4=0\end{cases}< =>\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}}\)
\(\left(x-2\right)\left(x+1\right)=x^2-4\)
\(< =>\left(x-2\right)\left(x+1\right)=\left(x-2\right)\left(x+2\right)\)
\(< =>\left(x-2\right)\left(x+1-x-2\right)=0\)
\(< =>-1\left(x-2\right)=0\)
\(< =>2-x=0< =>x=2\)
Câu 2:
\(=\dfrac{x^2\left(2x-5\right)+3\left(2x-5\right)}{2x-5}=x^2+3\)
Câu 3:
\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
\(a,2x\left(3x^2+1\right)=6x^3+2x\)
\(b,\left(2x^3-5x^2+6x\right):2=x^3-\dfrac{5}{2}x^2+3x\)
\(c,\left(x-3\right)\left(x+5\right)-x\left(x+2\right)=x^2+5x-3x-15-x^2-2x=-15\)
1: Sửa đề: 3x-5
\(=\dfrac{-x^2\left(3x-5\right)-3\left(3x-5\right)}{3x-5}=-x^2-3\)
2: \(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)
=5x^2+14x^2+12x+8
3: \(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}=5x^2+4x+4\)
4: \(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}=x^2+1-2x\)
5: \(=\dfrac{x^2\left(5-3x\right)+3\left(5-3x\right)}{5-3x}=x^2+3\)
a: P(x)=6x^3-4x^2+4x-2
Q(x)=-5x^3-10x^2+6x+11
M(x)=x^3-14x^2+10x+9
b: \(C\left(x\right)=7x^4-4x^3-6x+9+3x^4-7x^3-5x^2-9x+12\)
=10x^4-11x^3-5x^2-15x+21
\(\left(2x^3+5x^2+6x-15\right):\left(2x-5\right)=\left[x^2\left(2x-5\right)+3\left(2x-5\right)\right]:\left(2x-5\right)=\left[\left(2x-5\right)\left(x^2+3\right)\right]:\left(2x-5\right)=x^2+3\)