K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2019

mặc dù em ko liên quan nhưng em vẫn cảm ơn cô ạ

anh Hoàng Nhất Thiên,Toshiro Kiyoshi,Hùng Nguyễn,chị Trần Thị Hà My,..... đăng lên trang chủ đi

17 tháng 3 2019

Nguyễn Minh Huyền

Bạn vào Vndoc.vn tham khảo nhé

21 tháng 11 2018

Bn cho mk cái link vs

15 tháng 7 2017

mk người nghệ an nè

15 tháng 7 2017

google

cần thiết qya gmail gửi cho

ở chỗ tớ Hoá với Địa (Anh Sơn, Nghệ An)

2 tháng 4 2019

thật hả bạn bạn biết khi nào vậy sao trường mình chưa biết

18 tháng 3 2019

==". Mình có nên đi Hóa không trời !!!!!!!!!

19 tháng 3 2019

ế!? tỉnh của Tỉnh này.

24 tháng 11 2016

Gọi d là ƯCLN(2n+5,n+3)(d\(\in\)N*)

Ta có:\(2n+5⋮d,n+3⋮d\)

\(\Rightarrow2n+5⋮d,2\cdot\left(n+3\right)⋮d\)

\(\Rightarrow2n+5⋮d,2n+6⋮d\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vì ƯCLN(2n+5,n+3)=1

\(\Rightarrow\frac{2n+5}{n+3}\) là phân số tối giản

 

Gọi d là ƯCLN(2n+5,n+3)(d

N*)

Ta có:2n+5⋮d,n+3⋮d

 

⇒2n+5⋮d,2⋅(n+3)⋮d

 

⇒2n+5⋮d,2n+6⋮d

 

⇒(2n+6)−(2n+5)⋮d

 

⇒1⋮d⇒d=1

 

Vì ƯCLN(2n+5,n+3)=1

24 tháng 11 2016

Đặt A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

A=\(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{100\cdot100}\)

A<\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

A<\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

A<\(1-\frac{1}{100}=\frac{99}{100}< 1\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

24 tháng 11 2016

Ta có : \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

Đặt : \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)

Vì : \(A< 1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

Vậy ...

24 tháng 11 2016

Ta có :

\(\begin{cases}\frac{1}{2^2}< \frac{1}{1.2}\\\frac{1}{3^2}< \frac{1}{2.3}\\.....\\\frac{1}{100^2}< \frac{1}{99.100}\end{cases}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}< 1\)

24 tháng 11 2016

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

..........................

\(\frac{1}{100^2}=\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(1-\frac{1}{100}< 1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)