Cho hai điểm A,B cố định phân biệt nằm cùng phía với đường thẳng d. Tìm trên đường thẳng d điểm C để tam giác ABC có chu vi nhỏ nhất. Em cảm ơn trước.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy A’’ đối xứng với A qua d.
Chu vi tam giác ABC = AB + AC + BC = AB + CA’’+ CB
Vì độ dài AB không đổi nên để chu vi tam giác ABC nhỏ nhất khi và chỉ khi CA” + CB nhỏ nhất.
Lại có; C A " + C B ≥ A " B
Do đó, để chu vi tam giác ABC nhỏ nhất khi và chỉ khi CA” + CB = A”B. Khi đó: B, C, A’’ thẳng hàng.
Đáp án C
EM MỚI HỌC LỚP 6 , EM CHƯA BÍT BÀI NÀY THÔNG CẢM NHA !!!
. Gọi A' là điểm đối xứng của A qua d Þ A' cố định.
Vì C Î d Þ CA = CA' (tính chất đối xứng trục). Ta có:
PDABC = AB + AC + BC
= AB + (CA' + CB) ≥ AB + BA' (không đổi. Dấu "=" xảy ra tức là chu vi tam giác nhỏ nhất khi C là giao điểm của d và BA'
- Tìm điểm A’ đối xứng với A qua d
- Nối A’B cắt d tại M . M chính là điểm cần tìm .
- Thật vậy : Vì A’ đối xứng với A qua d cho nên MA=MA’ (1). Do đó :
MA+MB=MA’+MB=A’B .
- Giả sử tồn tại M’ khác M thuộc d thì : M’A+M’B=M’A’+M’B
'A B≥
. Dấu bằng chỉ
xảy ra khi A’M’B thẳng hàng . Nghĩa là M trùng với M’
1: Điểm cố định của (d) là:
x=0 và y=m*0+2=2
2: PTHĐGĐ là:
x2-mx-2=0
a=1; b=-m; c=-2
Vì a*c<0
nên (P) luôn cắt (d) tại hai điểm khác phía so với trục tung