K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2019

\(3^n+9-2^n-16+3^n+2^n=2.3^n-7\)

17 tháng 3 2019

\(3^{n+2}-2^{n+4}+3^n+2^n\)

\(=3^n.3^2-2^n.2^4+3^n+2^n\)

\(=\left(3^n.3^2+3^n\right)-\left(2^n.2^2-2^n\right)\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2-1\right)\)

\(=3^n.10-2^n.3\)

16 tháng 11 2022

1: =>3n-12+17 chia hết cho n-4

=>\(n-4\in\left\{1;-1;17;-17\right\}\)

hay \(n\in\left\{5;3;21;-13\right\}\)

2: =>6n-2+9 chia hết cho 3n-1

=>\(3n-1\in\left\{1;-1;3;-3;9;-9\right\}\)

hay \(n\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};-\dfrac{2}{3};\dfrac{10}{3};-\dfrac{8}{3}\right\}\)

4: =>2n+4-11 chia hết cho n+2

=>\(n+2\in\left\{1;-1;11;-11\right\}\)

hay \(n\in\left\{-1;-3;9;-13\right\}\)

5: =>3n-4 chia hết cho n-3

=>3n-9+5 chia hết cho n-3

=>\(n-3\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{4;2;8;-2\right\}\)

6: =>2n+2-7 chia hết cho n+1

=>\(n+1\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{0;-2;6;-8\right\}\)

14 tháng 12 2022

    3n+4+3n+2 + 2n+3 + 2n+1

=  3n.( 34 + 32) + 2n.( 23+2)

= 3n.90 + 2n.10

= 10.( 3n.9+2n.5)

vì 10 ⋮ 5 ⇔ 10.( 3n.9 + 2n.5) ⋮ 5 ⇔ 3n+4+3n+2+2n+2+2n+1 ⋮ 5(đpcm)

30 tháng 12 2022

\(3^{n+2}-2^{n+4}+3^n+2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+4}-2^n\right)=\left(3^n.9+3^n\right)-\left(2^n.16-2^n\right)=3^n.\left(9+1\right)-2^n.\left(16-1\right)=3^n.10-2^n.15=3^{n-1}.3.10-2^{n-1}.2.15=3^{n-1}.30-2^{n-1}.30=30.\left(3^{n-1}-2^{n-1}\right)\)

Vì \(30⋮30=>30.\left(3^{n-1}-2^{n-1}\right)⋮30=>3^{n+2}-2^{n+4}+3^n+2^n⋮30\)

Sửa đề: \(11\cdot5^{2n}+2^{3n+2}+2^{3n+1}\)

Ta có: \(11\cdot5^{2n}+2^{3n+2}+2^{3n+1}\)

\(=11\cdot25^n+8^n\cdot4+8^n\cdot2\)

\(=11\cdot25^n+6\cdot8^n\)

Vì \(25\equiv8\)(mod 17)

nên \(11\cdot25^n+6\cdot8^n\equiv11\cdot8^n+6\cdot8^n\equiv17\cdot8^n\equiv0\)(mod 17)

hay \(11\cdot5^{2n}+2^{3n+2}+2^{3n+1}⋮17\)(đpcm)

\(1.3n+1\inƯ\left(10\right)\)

Ta lập bảng xét giá trị 

3n+11-12-25-510-10
3n0-21-34-69-11
n0-2/31/3-14/3-23-11/3

\(2.13⋮3n+1\)

\(\Rightarrow3n+1\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)

Ta lập bảng xét g trị

3n+11-113-13
n0-2/34-14/3

\(3.2n+8⋮2n+1\)

\(\Rightarrow\left(2n+1\right)+7⋮2n+1\)

\(\Rightarrow7⋮2n+1\)

\(\Rightarrow2n+1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta lập bảng xét g trị

2n+11-17-7
2n0-26-8
n0-13-4

\(4.6n+6⋮2n+1\)

\(\Rightarrow6n+3+1⋮2n+1\)

\(\Rightarrow3.\left(2n+1\right)+1⋮2n+1\)

\(\Rightarrow1⋮2n+1\)

\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)

Ta lập bảng xét g trị 

2n+11-1
2n0-2
n0-1


 

2 tháng 12 2019

Bài chứng minh hả bạn

19 tháng 12 2022

a: =>n-1+5 chia hết cho n-1

=>\(n-1\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{2;0;6;-4\right\}\)

b: =>n^2+2n+1-4 chia hết cho n+1

=>\(n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(n\in\left\{0;-2;1;-3;3;-5\right\}\)

c: =>3n-6+5 chiahết cho n-2

=>\(n-2\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{3;1;7;-3\right\}\)

20 tháng 12 2022

a,(n+4) \(⋮\) (n-1) \(\Leftrightarrow\) n -1 + 5 \(⋮\) (n-1)  \(\Leftrightarrow\) 5 \(⋮\) n - 1 \(\Leftrightarrow\) n-1 \(\in\) { -5; -1; 1; 5} \(\Leftrightarrow\)n\(\in\){-4;0;2;6}

b,Theo Bezout  n2 +2n - 3 \(⋮\) n + 1 \(\Leftrightarrow\) (-1)2 + 2(-1) - 3  \(⋮\) n+1

\(\Leftrightarrow\) -4 \(⋮\) n+1 \(\Leftrightarrow\) n+1 \(\in\) { -4; -1; 1; 4} \(\Leftrightarrow\) n \(\in\) { -5; -2; 0; 3}

c, 3n -1 \(⋮\) n-2 \(\Leftrightarrow\) 3(n-2) + 5 \(⋮\) n-2 \(\Leftrightarrow\) 5 \(⋮\) n-2 \(\Leftrightarrow\) n-2 \(\in\) { -5; -1; 1; 5}

\(\in\) { -3; 1; 3; 7}

d, 3n + 1 \(⋮\) 2n - 1 

\(\Leftrightarrow\)2.(3n+1) \(⋮\) 2n -1 

\(\Leftrightarrow\) 6n + 2 \(⋮\) 2n - 1

\(\Leftrightarrow\) 6n - 3 + 5 \(⋮\) 2n-1

\(\Leftrightarrow\) 3.(2n-1) + 5 \(⋮\) 2n-1

\(\Leftrightarrow\)                 5 \(⋮\) 2n - 1

\(\Leftrightarrow\) 2n - 1 \(\in\) { -5; -1; 1; 5}

\(\Leftrightarrow\) n \(\in\) { -2; 0; 1; 3}

 

 

 

30 tháng 1 2019

a, -4(2n+3)+11 chia hết cho 2n+3

suy ra 11 chia hết cho 2n+3( do -4(2n+3) chia hết cho 2n+3)

suy ra 2n+3 thuộc ước của 11

hay 2n+3 thuộc 1;-1;11;-11

hay n thuộc -1;-2;4;-7

vậy n thuộc -1;-2;4;-7 

các bài khác cũng nhân ra như vậy là tìm được n

30 tháng 1 2019

a, -4(2n+3)+11 chia hết cho 2n+3

suy ra 11 chia hết cho 2n+3( do -4(2n+3) chia hết cho 2n+3)

suy ra 2n+3 thuộc ước của 11

hay 2n+3 thuộc 1;-1;11;-11

hay n thuộc -1;-2;4;-7

vậy n thuộc -1;-2;4;-7 

4 tháng 7 2017

2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1

Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1

3) Ta có : 5n - 1 chia hết chi n - 2  

=> 5n - 10 + 9 chia hết chi n - 2 

=> 5(n - 2) + 9 chia hết chi n - 2 

=> n - 2 thuộc Ư(9) = {1;3;9}

Ta có bảng : 

n - 2139
n3511
4 tháng 7 2017

1) Ta có : 2n + 3 chia hết cho 3n + 1 

<=> 6n + 9 chia hết cho 3n + 1

<=> 6n + 2 + 7 chia hết cho 3n + 1

=>  7 chia hết cho 3n + 1

=> 3n + 1 thuộc Ư(7) = {1;7}

Ta có bảng : 

3n + 117
3n06
n02

Vậy n thuộc {0;2}

5 tháng 7 2017

Ta có n-3=n+4-7

6)=>n-4+7 chia hết cho n+4

=>7 chia hết cho n+4

=> n+4 thuộc Ư(7)

=> n+4 thuộc {1, -1,7,-7}

=> n thuộc {-3,-5,3,-11}