K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2017

Oái gặp bn trùng tên nè!

a) Để phân số \(\dfrac{a^2+a+3}{a+1}\) là số nguyên thì :

\(a^2+a+3⋮a+1\)

\(a+1⋮a+1\)

\(\Rightarrow\left\{{}\begin{matrix}a^2+a+3⋮a+1\\a^2+a⋮a+1\end{matrix}\right.\)

\(\Rightarrow3⋮a+1\)

\(a\in Z\Rightarrow a+1\in Z;a+1\inƯ\left(3\right)\)

Ta có bảng :

\(a+1\) \(1\) \(3\) \(-1\) \(-3\)
\(a\) \(0\) \(2\) \(-2\) \(-4\)
\(Đk\) \(a\in Z\) TM TM TM TM

Vậy \(a\in\left\{0;2;-2;-4\right\}\) là giá trị cần tìm

b) Ta có :

\(x-2xy+y=0\)

\(\Rightarrow2x-4xy-2y=0\)

\(\Rightarrow\left(2x-4xy\right)+2y-1=0-1\)

\(\Rightarrow\left(2x-4xy\right)-\left(1-2y\right)=-1\)

\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)

\(\Rightarrow\left(1-2y\right)\left(2x-1\right)=-1\)

\(x,y\in Z\Rightarrow1-2y;2x-1\in Z,1-2y;2x-1\inƯ\left(-1\right)\)

Ta có bảng :

\(x\) \(2x-1\) \(1-2y\) \(y\) \(Đk\) \(x,y\in Z\)
\(0\) \(-1\) \(1\) \(0\) TM
\(1\) \(1\) \(-1\) \(1\) TM

Vậy cặp giá trị \(\left(x,y\right)\) cần tìm là :

\(\left(0,0\right);\left(1,1\right)\)

18 tháng 6 2017

b) \(x-2xy+y=0\)

\(\Rightarrow x-\left(2xy-y\right)=0\)

\(\Rightarrow x-y\left(2x-1\right)=0\)

\(\Rightarrow2x-2y\left(2x-1\right)=0\)

\(\Rightarrow\left(2x-1\right)-2y\left(2x-1\right)=0-1=-1\)

\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)

Ta có:

TH1: \(\left\{{}\begin{matrix}2x-1=1\\1-2y=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

TH2:\(\left\{{}\begin{matrix}2x-1=-1\\1-2y=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Vậy...................

21 tháng 11 2015

 

xy=x-y

xy+y =x

y(x+1) =x

 vì x không chia hết cho x+1

=>  x+1 =1 => x =0 => y =0

hoặc x+1 =-1 => x =-2 => y(-1) =-2 => y =2

Vậy (x;y) = (0;0);(-2;2)

10 tháng 2 2019

n + 5 chia hết cho 2n - 1

=> 2 ( n + 5 ) chia hết cho 2n - 1 

=> 2n + 10 chia hết cho 2n - 1

2n - 1 + 11 chia hết cho 2n - 1

Mà 2n - 1 chia hết cho 2n - 1

=> 11 chia hết cho 2n - 1

=> 2n - 1 thuộc Ư( 11 )

=> 2n - 1 thuộc { - 1 ; 1 ; 11 ; - 11 }

=> 2n thuộc { 0 ; 2 ; 12 ; - 10 }

=> n thuộc { 0 ; 1 ; 6 ; - 5 }

\(\left(x-2\right)\left(y-1\right)=5\)

\(\Rightarrow\left(x-2\right);\left(y-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Xét các trường hợp : 

  • \(\hept{\begin{cases}x-2=5\\y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=7\\y=2\end{cases}}}\)
  • \(\hept{\begin{cases}x-2=-5\\y-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=0\end{cases}}}\)
  • \(\hept{\begin{cases}x-2=1\\y-1=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=6\end{cases}}}\)
  • \(\hept{\begin{cases}x-2=-1\\y-1=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-4\end{cases}}}\)

b: Để A là số nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3+4⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{1;-1;2;-2;4\right\}\)

hay \(x\in\left\{16;4;25;1;49\right\}\)

13 tháng 4 2017

x^2016 chia hết cho p 

suy ra x chia hết cho p (x^2016 đồng dư với x)

y^2017 chia hết cho p 

suy ra y chia hết cho p(y^2017 đồng dư với y)

suy ra x+y chia hết cho p 

do p>1 nên 1+x+y ko chia hết cho p