tìm m để phương trình \(x^2-2\left(m+1\right)x+4m-3=0\)có 2 nghiệm x1, x2 thỏa mãn \(2x_1+x_2=5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=m^2-6x+9-2m+7=m^2-8m+16=\left(m-4\right)^2\)
để phương trình có 2 nghiệm phân biệt => \(m\ne4\)
vời m khác 4 theo viet :
\(\left\{{}\begin{matrix}x1+x2=2m-6\left(1\right)\\x1.x2=2m-7\left(2\right)\end{matrix}\right.\)
\(x2-2x1=1\left(3\right)\)
từ 1 và 3 ta có hpt :
\(\left\{{}\begin{matrix}x1+x2=2m-6\\-2x1+x2=1\end{matrix}\right.< =>\left\{{}\begin{matrix}3x1=2m-7\\-2x1+x2=1\end{matrix}\right.< =>\left\{{}\begin{matrix}x1=\dfrac{2m-7}{3}\\\dfrac{-4m+14}{3}+x2=1\end{matrix}\right.< =>\left\{{}\begin{matrix}x1=\dfrac{2m-7}{3}\\x2=1-\dfrac{-4m+14}{3}=\dfrac{4m-11}{3}\end{matrix}\right.\)
thay \(\left\{{}\begin{matrix}x1=\dfrac{2m-7}{3}\\x2=1-\dfrac{-4m+14}{3}=\dfrac{4m-11}{3}\end{matrix}\right.\) vào phương trình 2
<=>\(\dfrac{2m-7}{3}.\dfrac{4m-11}{3}=2m-7< =>8m^2-50m+77=18m-63< =>8m^2-68m+140=0< =>\left(m-5\right)\left(2m-7\right)=0< =>m=5\left(tm\right);m=\dfrac{7}{2}\left(tm\right)\)
b) phương trình có 2 nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)
\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)
\(\Leftrightarrow-4m+4\ge0\)
\(\Leftrightarrow m\le1\)
Ta có: \(x_1^2+x_1x_2+x_2^2=1\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)
\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)
\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)
\(\Leftrightarrow4m^2-10m-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)
Cách ngắn ngọn nhất:
\(x^2-2\left(m+1\right)x+4m=0\left(1\right)\)
\(\Leftrightarrow x^2-2x-2mx+4m=0\)
\(\Leftrightarrow x\left(x-2\right)-2m\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=2m\end{matrix}\right.\)
Phương trình (1) có 2 nghiệm là \(x=2;x=2m\). Mặt khác phương trình (1) cũng có 2 nghiệm là x1, x2 nên ta chia làm 2 trường hợp:
TH1: \(x_1=2;x_2=2m\).
Có \(2x_1-x_2=-2\Rightarrow2.2-2m=-2\Leftrightarrow m=3\)
TH2: \(x_1=2m;x_2=2\)
Có \(2x_1-x_2=-2\Rightarrow2.\left(2m\right)-2=-2\Leftrightarrow m=0\)
Vậy m=0 hay m=3
Bài 2:
Ta có: \(\text{Δ}=\left(2m+2\right)^2-4\cdot\left(m^2+4m+3\right)\)
\(=4m^2+8m+4-4m^2-16m-12\)
\(=-8m-8\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
hay m<-1
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=-2m-2\\x_1x_2=m^2+4m+3\end{matrix}\right.\)
Ta có: \(2x_1+2x_2-x_1x_2+7=0\)
\(\Leftrightarrow2\left(x_1+x_2\right)-x_1x_2+7=0\)
\(\Leftrightarrow2\cdot\left(-2m-2\right)-m^2-4m-3+7=0\)
\(\Leftrightarrow-4m-4-m^2-4m+4=0\)
\(\Leftrightarrow m\left(m+8\right)=0\)
\(\Leftrightarrow m=-8\)
Ta có: \(\Delta'=m^2+2m+1-m^2-4m-3=-2m-2\)
Để PT có 2 nghiệm thì \(-2m-2\ge0\Leftrightarrow m\le-1\)
Theo viet \(\left\{{}\begin{matrix}x_1+x_2=-2m-2\\x_2x_2=m^2+4m+3\end{matrix}\right.\)
theo bài
\(2x_1+2x_2-x_1x_2+7=0\)
\(\Leftrightarrow2\left(x_1+x_2\right)-x_1x_2+7=0\)
Thay số:
\(2\left(-2m-2\right)-m^2-4m-3+7=0\)
\(\Leftrightarrow-m^2-8m=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-8\\m=0\left(loai\right)\end{matrix}\right.\)
Vậy ...
Chúc bạn học tốt
=>căn 2x1=x2-1
=>2x1=x2^2-2x2+1
=>x2^2-2(x1+x2)+1=0
=>x2^2-2(2m+1)+1=0
=>x2^2=4m+2-1=4m+1
=>\(x_2=\pm\sqrt{4m+1}\)
=>\(x_1=2m+1\pm\sqrt{4m+1}\)
x1*x2=m^2-m
=>m^2-m=4m+1\(\pm2m+1\)
=>m^2-5m-1=\(\pm2m+1\)
TH1: m^2-5m-1=2m+1
=>m^2-7m-2=0
=>\(m=\dfrac{7\pm\sqrt{57}}{2}\)
TH2: m^2-5m-1=-2m-1
=>m^2-3m=0
=>m=0; m=3
dầu tiên bn tìm đenta phẩy
sau đó cm nó lớn hơn 0
theo hệ thức viet tính đc x1+x2=... và x1*x2=....
thay vào hệ thức đã cho tính đc ..
a, Thay \(m=-3\) vào \(\left(1\right)\)
\(x^2-2.\left(m-1\right)x-m-3=0\\ \Leftrightarrow x^2-2.\left(-3-1\right)x+3-3=0\\ \Leftrightarrow x^2+8x=0\\ \Leftrightarrow x\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)
Vậy với \(m=-3\) thì \(x=0;x=-8\)
b,
\(\Delta'=\left[-\left(m-1\right)\right]^2-1.\left(-m-3\right)\\ =m^2-2m+1+m+3\\ =m^2-m+4\)
phương trình có hai nghiệm phân biệt
\(\Delta'>0\\ m^2-m+4>0\\ \Rightarrow m^2-2.\dfrac{1}{2}m+\dfrac{1}{4}+\dfrac{7}{2}>0\\ \Leftrightarrow\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{2}>0\left(lđ\right)\)
\(\Rightarrow\forall m\)
Áp dụng hệ thức Vi ét :
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\)
\(\left(x_1-x_2\right)^2=4m^2-5\left(x_1+x_2\right)\\ \Leftrightarrow x_1^2+2x_1.x_2+x^2_2-4x_1x_2=4m^2-5\left(x_1+x_2\right)\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4m^2-5\left(x_1+x_2\right)\\ \Leftrightarrow\left(2.\left(m-1\right)\right)^2-4.\left(-m-3\right)=4m^2-5.\left(-m-3\right)\\ \Leftrightarrow4m^2-8m+4+4m+12-4m^2-5m-15=0\\ \Leftrightarrow-9m+1=0\\ \Leftrightarrow m=\dfrac{1}{9}\)
Vậy \(m=\dfrac{1}{9}\)
a.
Thế m = -3 vào phương trình (1) ta được:
\(x^2-2\left(-3-1\right)x-\left(-3\right)-3=0\)
\(\Leftrightarrow\) \(x^2+8x=0\)
\(\Leftrightarrow x\left(x+8\right)=0\\ \Rightarrow x_1=0,x_2=-8\)
b.
Để phương trình (1) có hai nghiệm phân biệt thì:
\(\Delta>0\\ \Leftrightarrow\left[-2\left(m-1\right)\right]^2-4.1.\left(-m-3\right)>0\)
\(\Leftrightarrow4.\left(m^2-2m+1\right)+4m+12>0\)
\(\Leftrightarrow4m^2-8m+4+4m+12>0\)
\(\Leftrightarrow4m^2-4m+16>0\)
\(\Leftrightarrow\left(2m\right)^2-4m+1+15>0\)
\(\Leftrightarrow\left(2m-1\right)^2+15>0\)
Vì \(\left(2m-1\right)^2\) luôn lớn hơn hoặc bằng 0 với mọi m nên phương trình (1) có nghiệm với mọi m.
Theo viét:
\(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-m-3\end{matrix}\right.\) (I)
có:
\(\left(x_1-x_2\right)^2=4m^2-5x_1+x_2\)
<=> \(x_1^2-2x_1x_2+x_2^2-4m^2+5x_1-x_2=0\)
<=> \(x_1^2-2x_1x_2+x_2^2+2x_1x_2-2x_1x_2-4m^2+5x_1-x_2=0\)
<=> \(\left(x_1+x_2\right)^2-4x_1x_2-4m^2+5x_1-x_2=0\)
<=> \(\left(2m-2\right)^2-4.\left(-m-3\right)-4m^2+5x_1-x_2=0\)
<=> \(4m^2-8m+4+4m+12-4m^2+5x_1-x_2=0\)
<=> \(-4m+16+5x_1-x_2=0\)
<=> \(5x_1-x_2=4m-16\) (II)
Từ (I) và (II) ta có:
\(\left\{{}\begin{matrix}5x_1-x_2=4m-16\left(2\right)\\x_1+x_2=2m-2\left(3\right)\\x_1x_2=-m-3\left(4\right)\end{matrix}\right.\)
Từ (2) ta có:
\(x_1=\dfrac{4m-16+x_2}{5}=\dfrac{4}{5}m-3,2+\dfrac{1}{5}x_2\) (x)
Thế (x) vào (3) được:
\(\dfrac{4}{5}m-3,2+\dfrac{1}{5}x_2+x_2=2m-2\)
<=> \(\dfrac{4}{5}m-3,2+\dfrac{1}{5}x_2+x_2-2m+2=0\)
<=> \(-1,2m-1,2+1,2x_2=0\)
<=> \(x_2=1,2m+1,2\) (xx)
Thế (xx) vào (3) được:
\(x_1+1,2m+1,2=2m-2\)
<=> \(x_1+1,2m+1,2-2m+2=0\)
<=> \(x_1-0,8m+3,2=0\)
<=> \(x_1=-3,2+0,8m\) (xxx)
Thế (xx) và (xxx) vào (4) được:
\(\left(-3,2+0,8m\right)\left(1,2m+1,2\right)=-m-3\)
<=> \(-3,84m-3,84+0,96m^2+0,96m+m+3=0\)
<=> \(0,96m^2-1,88m-0,84=0\)
\(\Delta=\left(-1,88\right)^2-4.0,96.\left(-0,84\right)=6,76\)
\(m_1=\dfrac{1,88+\sqrt{6,76}}{2.0,96}=\dfrac{7}{3}\left(nhận\right)\)
\(m_2=\dfrac{1,88-\sqrt{6,76}}{2.0,96}=-\dfrac{3}{8}\left(nhận\right)\)
T.Lam
ê con ngáo
Xét phương trình \(x^2-2\left(m+1\right)x+4m-3=0\) (1) là phương trình bậc hai một ẩn
Có \(\Delta'=m^2-2m+4>0\)nên phương trình (1) luôn có 2 nghiệm phân biệt \(x_1,x_2\)
Áp dụng ĐL Vi-et có: \(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=4m-3\end{cases}}\)
Ta có: \(2x_1+x_2=5\Leftrightarrow x_1=5-\left(x_1+x_2\right)\Rightarrow x_1=5-\left(2m+2\right)=3-2m\)
Giả sử: \(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=2m+2+\sqrt{m^2-2m+4}\)
Khi đó: \(2m+2+\sqrt{m^2-2m+4}=3-2m\)\(\Leftrightarrow\sqrt{m^2-2m+4}=1-4m\)
\(\Leftrightarrow\hept{\begin{cases}m\le\frac{1}{4}\\5m^2-2m-1=0\end{cases}}\Leftrightarrow m\le\frac{1}{4}\) và \(\orbr{\begin{cases}m=\frac{1+\sqrt{6}}{5}\left(l\right)\\m=\frac{1-\sqrt{6}}{5}\left(c\right)\end{cases}}\)
Giả sử \(x_1=\frac{-b'-\sqrt{\Delta'}}{a}=2m+2-\sqrt{m^2-2m+4}\)
Khi đó: \(\sqrt{m^2-2m+4}=4m-1\)(Giải tương tự)
Vậy \(m=\frac{1-\sqrt{6}}{5}\) thỏa mãn đề.