K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2019

Phải là AF cắt BE tại Q ms đúng , mk ghi lầm .

15 tháng 3 2019

A B E F P Q O

Vì E, F thuộc (O) nên: \(\widehat{AEB}=\widehat{AFB}=90^o\)(Góc nội tiếp chắn nửa đường tròn).

\(\Rightarrow\)AF, BE là hai đường cao của tam giác APB.

Mà AF và BE cắt nhau tại Q. Nên Q là trực tâm của tam giác APB.

\(\Rightarrow\)PQ là đường cao thứ 3 \(\Rightarrow PQ\perp AB\left(đfcm\right)\)

a: Xét tứ giác BEFC có \(\widehat{BEC}=\widehat{BFC}=90^0\)

nên BEFC là tứ giác nội tiếp đường tròn đường kính BC

=>B,E,F,C cùng thuộc một đường tròn

tâm I là trung điểm của BC

b: Xét ΔABC có

BF,CE là các đường cao

BF cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC

=>AM\(\perp\)BC

Xét (O) có

ΔAMD nội tiếp

AD là đường kính

Do đó: ΔAMD vuông tại M

=>AM\(\perp\)MD

Ta có: AM\(\perp\)BC

AM\(\perp\)MD

Do đó: BC//MD

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{ADC}\)

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

Ta có: \(\widehat{BAH}+\widehat{ABC}=90^0\)(AH\(\perp\)BC)

\(\widehat{ADC}+\widehat{CAD}=90^0\)(ΔACD vuông tại C)

mà \(\widehat{ABC}=\widehat{ADC}\)

nên \(\widehat{BAH}=\widehat{CAD}\)

=>\(\widehat{BAH}+\widehat{MAD}=\widehat{CAD}+\widehat{MAD}\)

=>\(\widehat{BAD}=\widehat{CAM}\)(1)

Xét (O) có

\(\widehat{BAD}\) là góc nội tiếp chắn cung BD

\(\widehat{BCD}\) là góc nội tiếp chắn cung BD

Do đó: \(\widehat{BAD}=\widehat{BCD}\left(2\right)\)

Xét (O) có

\(\widehat{CBM}\) là góc nội tiếp chắn cung CM

\(\widehat{CAM}\) là góc nội tiếp chắn cung CM

Do đó: \(\widehat{CBM}=\widehat{CAM}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\widehat{CBM}=\widehat{BCD}\)

Xét tứ giác BCDM có BC//DM

nên BCDM là hình thang

Hình thang BCDM có \(\widehat{CBM}=\widehat{BCD}\)

nên BCDM là hình thang cân

c: Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>BA\(\perp\)BD

mà CH\(\perp\)BA

nên CH//BD

Ta có: CD\(\perp\)CA

BH\(\perp\)AC

Do đó: BH//CD

Xét tứ giác BHCD có

BH//CD
BD//CH

Do đó: BHCD là hình bình hành

=>BC cắt HD tại trung điểm của mỗi đường

mà I là trung điểm của BC

nên I là trung điểm của HD

=>H,I,D thẳng hàng

d: Kẻ tiếp tuyến Ax của (O)

Xét (O) có

\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{xAC}=\widehat{ABC}\)

mà \(\widehat{ABC}=\widehat{AFE}\left(=180^0-\widehat{EFC}\right)\)

nên \(\widehat{xAC}=\widehat{AFE}\)

mà hai góc này là hai góc ở vị trí so le trong

nên EF//Ax

Ta có: Ax//EF

Ax\(\perp\)AD

Do đó: AD\(\perp\)EF tại K

HD
20 tháng 1 2021

Thọ tested

Good!

\(e^{i\pi}=-1\)

6 tháng 2 2021

a) Xét (O) có: AB đường kính (gt), F ϵ (O)

⇒ △ BAF vuông tại F.

⇒ BF vuông góc với AF tại F. hay BF vuông góc với KF

Mà CD vuông góc với KF tại K (gt)

⇒ CD//BF

⇒ 2 cung nhỏ CF và BD chắn 2 dây // của (O) sẽ bằng nhau.

⇒ Đcpcm

b) Ta thấy CDBF là hình thang cân ( CD//BF, CF = BD )

⇒ 2 đường chéo BC = DF. (1)

Mà △ BCE cân tại B ( vì có BH vừa là đ/c, vừa là đường trung tuyến của △)

⇒BC=BE.(2)

Từ (1) và (2) ⇒ DF = BE.

⇒ cung DF = cung BE 

Cộng 2 vế trên với cung EF ta đc:

cung DE = cung BF

⇒ DE = BF

 

 

7 tháng 6 2019

a, HS tự chứng minh

b, Từ giả thiết ta có AB là đường trung trực của CE =>  B C ⏜ = B E ⏜ = B F ⏜ = D E ⏜

c, Sử dụng mối liên hệ cung và dây

25 tháng 3 2018

a,Xét tứ giác ACHI có: góc ACB = 90o (góc nội tiếp chắn nửa đường tròn)

                                     góc HIA = 90o (gt)

=> tổng hai góc này =180o mà đỉnh C và I lại nằm ở vị trí đối nhau => tứ giác ACHI là tứ giác nội tiếp đường tròn đường kính AH (đpcm)

25 tháng 3 2018

chưa biết C,H,B thẳng hàng mà bạn

Bài 4 Cho nửa đường tròn đường kính AB và dây AC. Từ một điểm D trên AC, vẽ DE vuông góc với AB. Hai đường thẳng DE và BC cắt nhau tại F. Chứng minh rằng:a) Tứ giác BCDE nội tiếp.b)góc AFE= ACE.Bài 5. Cho nứa đường tròn đường kính AB. Lấy hai điểm C và D trên nửa đường tròn sao cho cung AC= cung CD= cung DB. Các tiếp tuyến vẽ từ B và C của nửa đường tròn cắt nhau tại I.Hai tia AC và BD cắt...
Đọc tiếp

Bài 4 Cho nửa đường tròn đường kính AB và dây AC. Từ một điểm D trên AC, vẽ DE vuông góc với AB. Hai đường thẳng DE và BC cắt nhau tại F. Chứng minh rằng:

a) Tứ giác BCDE nội tiếp.

b)góc AFE= ACE.

Bài 5. Cho nứa đường tròn đường kính AB. Lấy hai điểm C và D trên nửa đường tròn sao cho cung AC= cung CD= cung DB. Các tiếp tuyến vẽ từ B và C của nửa đường tròn cắt nhau tại I.Hai tia AC và BD cắt nhau tại K. Chứng minh rằng:

a) Các tam giác KAB và IBC là những tam giác đêu.

b) Tứ giác KIBC nội tiếp.

Bài 6. Cho nửa đường tròn (0) đường kính AB và tia tiếp tuyến Bx của nửa đường tròn. Trên tia Bx lấy hai điểm C và D (C nằm giữa B và D). Các tia AC và BD lần lượt cắt đường tròn tại E và F. Hai dây AE và BF cắt nhau tại M. Hai tia AF và BE cắt nhau tại N. Chứng minh rằng:

a) Tứ giác FNEM nội tiêp.

b) Tứ giác CDFE nội tiếp.

Bài 7. Cho tam giác ABC. Hai đường cao BE và CF cắt nhau tại H. Gọi D là điểm đối xứng của H qua trung điểm M của BC.

a) Chứng minh rằng tứ giác ABDC nội tiếp được đường tròn. Xác định tâm 0 của đường tròn đó

b) Đường thẳng DH cắt đường tròn (0) tại điểm thứ hai là I. Chứng minh rằng năm điểm A, I, F, H, E cùng nằm trên một đường tròn

Các bạn giải giúp mình các bài này nhé, mình cảm ơn nhiều lắm

0