Cho \(a,b,c>0\) thỏa mãn \(a+b+c=3.CMR\) \(\frac{1}{2+a^2b}+\frac{1}{2+b^2c}+\frac{1}{2+c^2a}\ge1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐ0T \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) với x,y,z >0 có :
Vế trái \(\ge\frac{\left(a+b+c\right)^2}{a+b+c+2\cdot\left(a^2+b^2+c^2\right)}=\frac{9}{3+2\cdot\left(a^2+b^2+c^2\right)}\) (1) (vì a+b+c=3)
Có \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
\(\Leftrightarrow a^2-2a+1+b^2-2b+1+c^2-2c+1\ge0\)
\(\Leftrightarrow a^2+b^2+c^2-2\cdot\left(a+b+c\right)+3\ge0\)
\(\Leftrightarrow a^2+b^2+c^2-3\ge0\) (vì a+b+c=3)
\(\Leftrightarrow a^2+b^2+c^2\ge3\left(2\right)\)
Từ (1) và (2) => đpcm
k cho mk nhoa !!!!!!!!!!
Ngược dấu rồi bạn ơi
Không mất tính tổng quát giả sử \(a\ge b\ge c\)
Áp dụng BĐT Chebyshev ta có: \(\left(a+b+c\right)\left(a^3+b^3+c^3\right)\le3\left(a^4+b^4+c^4\right)\)
\(\Rightarrow3\left(a^3+b^3+c^3\right)\le3\left(a^4+b^4+c^4\right)\)\(\Rightarrow a^3+b^3+c^3\le a^4+b^4+c^4\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\frac{a^4}{a^3+2a^2b^2}+\frac{b^4}{b^3+2b^2c^2}+\frac{c^4}{c^3+2a^2c^2}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+2\left(a^2b^2+b^2c^2+c^2a^2\right)}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)}\)
\(=\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)^2}=1=VP\)
Dấu "=" kh \(a=b=c=1\)
Cho a, b, c dương thỏa a +b + c = 3. Cmr: \(\frac{1}{2+a^2b}+\frac{1}{2+b^2c}+\frac{1}{2+c^2a}\ge1\)
BĐT cần chứng minh tương đương:
\(\frac{2}{2+a^2b}+\frac{2}{2+b^2c}+\frac{2}{2+c^2a}\ge2\)
\(\Leftrightarrow\frac{a^2b}{2+a^2b}+\frac{b^2c}{2+b^2c}+\frac{c^2a}{2+c^2a}\le1\)
Ta có: \(VT=\sum\frac{a^2b}{1+1+a^2b}\le\frac{1}{3}\sum\frac{a^2b}{3\sqrt[3]{a^2b}}=\frac{1}{3}\sum\sqrt[3]{a^4b^2}=\frac{1}{3}\sum\sqrt[3]{a^2.ab.ab}\)
\(VT\le\frac{1}{9}\sum\left(a^2+ab+ab\right)=\frac{1}{9}\left(a+b+c\right)^2=1\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(1-\frac{a^2b}{2+a^2b}\ge1-\frac{a^2b}{3.\sqrt[3]{a^2b}}\)\(\rightarrow1-3\sqrt[3]{a^4b^2}=3.\sqrt[3]{ab.ab.a^2}\rightarrow.....\)
BĐT cần chứng minh tương đương với \(\frac{a^2b}{2+a^2b}+\frac{b^2c}{2+b^2c}+\frac{c^2a}{2+c^2a}\le1\)
Áp dụng BĐT Cauchy ta có: \(2+a^2b=1+1+a^2b\ge3\sqrt[3]{a^2b}\)
Do đó ta được \(\frac{a^2b}{1+a^2b}\le\frac{a^2b}{3\sqrt[3]{a^2b}}=\frac{a\sqrt[3]{ab^2}}{3}\)
Hoàn toàn tương tự ta được \(\frac{a^2b}{2+a^2b}+\frac{b^2c}{2+b^2c}+\frac{c^2a}{2+c^2a}\le\frac{a\sqrt[3]{ab^2}+b\sqrt[3]{bc^2}+c\sqrt[3]{ca}}{3}\)
Cũng theo BĐT Cauchy ta được \(\sqrt[3]{ab^2}\le\frac{a+b+b}{3}=\frac{a+2b}{3}\)
\(\Rightarrow a\sqrt[3]{ab^2}\le\frac{a\left(a+2b\right)}{3}=\frac{a^2+2ab}{3}\)
Tương tự cũng được \(a\sqrt[3]{ab^2}+b\sqrt[3]{bc^2}+c\sqrt[3]{ca}\le\frac{\left(a+b+c\right)^2}{3}=3\)
Từ đó ta được\(\frac{a^2b}{2+a^2b}+\frac{b^2c}{2+b^2c}+\frac{c^2a}{2+c^2a}\le1\)
Vậy BĐT được chứng minh. Dấu "=" xảy ra <=> a=b=c=1
\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=0\Leftrightarrow\frac{bc+ac-ab}{abc}=0\)
Vì \(a,b,c\ne0\Rightarrow abc\ne0\)
\(\Rightarrow bc+ac-ab=0\)
\(\Rightarrow\hept{\begin{cases}\left(bc+ac\right)^2=\left(ab\right)^2\\\left(bc-ab\right)^2=\left(-ac\right)^2\\\left(ac-ab\right)^2=\left(-bc\right)^2\end{cases}\Rightarrow\hept{\begin{cases}b^2c^2+c^2a^2-a^2b^2=-2abc^2\\b^2c^2+a^2b^2-a^2c^2=2ab^2c\\a^2c^2+a^2b^2-b^2c^2=2a^2bc\end{cases}}}\)
\(\Rightarrow E=\frac{a^2b^2c^2}{2ab^2c}+\frac{a^2b^2c^2}{-2abc^2}+\frac{a^2b^2c^2}{2a^2bc}\)
\(\Rightarrow E=\frac{ac}{2}-\frac{ab}{2}+\frac{bc}{2}=\frac{ac-ab+bc}{2}=\frac{0}{2}=0\)
CHÚC BẠN HỌC TỐT
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{bc+ac-ab}{abc}=0\)
Vì \(a,b,c\ne0\Rightarrow a.b.c\ne0\)
\(\Rightarrow bc+ac-ab=0\)
\(\Rightarrow\hept{\begin{cases}\left(bc+ac\right)^2=\left(ab\right)^2\\\left(bc-ab\right)^2=\left(-ac\right)^2\\\left(ac-ab\right)^2=\left(-bc\right)^2\end{cases}\Rightarrow}\hept{\begin{cases}b^2c^2+c^2a^2-a^2b^2=-abc^2\\b^2c^2+a^2b^2-a^2c^2=2ab^2c\\a^2c^2+a^2b^2-b^2c^2=2a^2bc\end{cases}}\)
\(\Rightarrow E=\frac{a^2b^2c^2}{2ab^2c}+\frac{a^2b^2c^2}{-2abc^2}+\frac{a^2b^2c^2}{2a^2bc}\)
\(\Rightarrow E=\frac{ac}{2}-\frac{ab}{2}+\frac{bc}{2}=\frac{ac-ab+bc}{2}=\frac{0}{2}=0\)
Vậy \(E=0\)
a) Dùng (a+b)2≥4ab
Chia hai vế cho a+b ( vì ab khác 0)
Ta có a+b≥\(\frac{4ab}{a+b}\) (Chuyển ab sang a+b) ta có
\(\frac{a+b}{ab}\)≥\(\frac{4}{a+b}\) <=> \(\frac{1}{a}\)+\(\frac{1}{b}\)≥\(\frac{4}{a+b}\)
Ta có :\(a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2\)\(>=2ab+2b+2=2\left(ab+b+1\right)\)
tương tự ta được \(b^2+2c^2+3>=2\left(bc+c+1\right)\)
\(c^2+2a^2+3>=2\left(ac+a+1\right)\)
theo đề bài abc=1
=> \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\)=\(\frac{1}{ab+b+1}+\frac{ab}{b+ab+1}+\frac{b}{ab+b+1}\)=1
=> VT<=1/2
Dấu bằng khi a=b=c=1
Ta có :$a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2$a2+2b2+3=(a2+b2)+(b2+1)+2$>=2ab+2b+2=2\left(ab+b+1\right)$>=2ab+2b+2=2(ab+b+1)
tương tự ta được $b^2+2c^2+3>=2\left(bc+c+1\right)$b2+2c2+3>=2(bc+c+1)
$c^2+2a^2+3>=2\left(ac+a+1\right)$c2+2a2+3>=2(ac+a+1)
theo đề bài abc=1
=> $\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}$1ab+b+1 +1bc+c+1 +1ca+a+1 =$\frac{1}{ab+b+1}+\frac{ab}{b+ab+1}+\frac{b}{ab+b+1}$1ab+b+1 +abb+ab+1 +bab+b+1 =1
=> VT<=1/2
Dấu bằng khi a=b=c=1
Bạn tham khảo:
Câu hỏi của khoimzx - Toán lớp 9 | Học trực tuyến
\(\frac{1}{2+a^2b}+\frac{1}{2+b^2c}+\frac{1}{2+c^2a}=\frac{3}{2}-\frac{1}{2}\left(\frac{a^2b}{2+a^2b}+\frac{b^2c}{2+b^2c}+\frac{c^2a}{2+c^2a}\right)\)
\(\ge\frac{3}{2}-\frac{1}{2}\left(\frac{a^2b}{3\sqrt[3]{a^2b}}+\frac{b^2c}{3\sqrt[3]{b^2c}}+\frac{c^2a}{3\sqrt[3]{c^2a}}\right)\)
\(=\frac{3}{2}-\frac{1}{6}\left(\sqrt[3]{a^4b^2}+\sqrt[3]{b^4c^2}+\sqrt[3]{c^4a^2}\right)\)
\(\ge\frac{3}{2}-\frac{1}{18}\left(2ab+a^2+2bc+b^2+2ca+c^2\right)\)
\(\ge\frac{3}{2}-\frac{3^2}{18}=1\)
Cái dấu \(\ge\)cuối dùng là dấu = nha tại lanh tay quá nên gõ nhầm