K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2015

khó quá mình mới học lớp 6 thôi

21 tháng 8 2015

Xét hiệu: (x+y)(y+z)(z+x)-8xyz=0
(=) (x+y)>=2√xy
(y+z)>=2√yz
(z+x)>=2√zx
(=) (x+y)(y+z)(z+x)>=8√x^2 y^2 z^2
(=) (x+y)(y+z)(x+z)>=8|x| |y| |z|
(=) ( x+y)(y+z)(z+x)>= 8xyz

 

AH
Akai Haruma
Giáo viên
3 tháng 4 2020

Lời giải:

Nếu $x>0$ thì $-x< 0$. Do đó $-x< 0< x\Rightarrow -x< x$. Đáp án A sai

Nếu $x>0\Rightarrow -x< 0$. Đáp án B sai

Nếu $x< 0\Rightarrow -x>0$. Do đó $-x>0>x\Rightarrow -x>x$. Đáp án C sai

Nếu $x>0\Rightarrow -x< 0$. Đáp án D đúng (chọn)

10 tháng 12 2016

vì x,y,z>0 nên áp dụng bđt côsi ta có

x+y >= 2\(\sqrt{xy}\)

y+z >= 2\(\sqrt{yz}\)

z+x >= 2\(\sqrt{xz}\)

\(\Rightarrow\)(x+y)(y+z)(z+x) >= 8\(\sqrt{x^2y^2z^2}\)

                                >= 8xyz

Dấu = xảy ra <=> x=y=z

8 tháng 5 2019

Áp dụng bất đẳng thức Cô-si ta có:

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}\cdot2\sqrt{yz}\cdot2\sqrt{zx}\)

\(=8\sqrt{x^2y^2z^2}=8xyz\)

Dấu = khi x=y=z

11 tháng 12 2016

Ta có:

\(\frac{x}{x+1}=1-\frac{1}{x+1}\)

\(\frac{y}{y+1}=1-\frac{y}{y+1}\)

\(\frac{z}{z+4}=1-\frac{4}{z+4}\)

\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+4}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\)

\(\le\left[3-\left(\frac{4}{x+y+2}+\frac{4}{z+4}\right)\right]\le\left(3-\frac{16}{x+y+z+6}\right)=3-\frac{16}{6}=\frac{1}{3}\)

 

 

 

24 tháng 12 2015

Ta  có x. (-x)=x.x.(-1)=-x^2>0

       ==> x^2<0 (vì âm của nó là dương)       (1)

              mà x>0==>x^2>0                          (2)

Từ (1) và (2) ==> mâu thuẫn

Vậy x thuộc rỗng