Chứng minh rằng phân số \(\frac{2n+3}{n+1}\) là phân số tối giản
các bn ơi giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN(2n + 3 ; 4n + 8) = d
=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\Rightarrow4n+8-\left(4n+6\right)⋮d}\)
=> \(2⋮d\Rightarrow d\inƯ\left(2\right)\Rightarrow d\in\left\{\pm1;\pm2\right\}\)
Vì 2n + 3 là số lẻ ; 4n + 8 là số chẵn
=> ƯCLN(2n + 3 ; 4n + 8) \(\ne\)\(\pm\)2
=> ƯCLN(2n + 3 ; 4n + 8) \(=\pm1\)
=> \(\frac{2n+3}{4n+8}\)là phân số tối giản
+)Gọi d là số nguyên tố là ƯCLN(2n+3,4n+8)
+)2n+3\(⋮\)d;4n+8\(⋮\)d
+)2n+3\(⋮\)d
=>2.(2n+3)\(⋮\)d
=>4n+6\(⋮\)d(1)
+)4n+8\(⋮\)d
+)Từ (1) và (2)
=>(4n+8)-(4n+6)\(⋮\)d
=>4n+8-4n-6\(⋮\)d
=>2\(⋮\)d
=>d\(\in\)Ư(2)={1;2}
Vì 2n+3\(⋮̸\)2
=>ƯCLN(2n+3,4n+8)=1
Vậy \(\frac{2n+3}{4n+8}\)tối giản với mọi n
Chúc bn học tốt.Có j ko hiểu hỏi mk nha
Để phân số n+1/2n+3 là phân số tối giản thì (n+1; 2n+3) =1
Gọi (n+1; 2n+3) =d => n+1 \(⋮\)d; 2n+3 \(⋮\)d
=> (2n+3) - (n+1) \(⋮\)d
=> (2n+3) -2(n+1) \(⋮\)d
=> 2n+3 -2n -2 \(⋮\)d
=> 1 \(⋮\)d
=> n+1/2n+3 là phân số tối giản
Vậy...
Gọi d là ƯC(n+1 ; 2n + 3)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)
=> ( 2n + 3 ) - ( 2n + 2 ) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(n +1 ; 2n + 3) = 1
=> \(\frac{n+1}{2n+3}\)tối giản ( đpcm )
\(\frac{2n+3}{2n+5}=\frac{2n+2+1}{2n+2+3}=\frac{2\left(n+1\right)+1}{2\left(n+1\right)+3}\)Ta thấy phân số trên có tử và mẫu là 2 số lẽ liên tiếp nên là phân số tối giản.
Gọi d = ƯCLN ( 14n + 3 ; 21n + 5 )
Ta có :
14n + 3 \(⋮\)d ; 21n + 5 \(⋮\)d
=> 3 ( 14n + 3 ) \(⋮\)d ; 2 ( 21n + 5 ) \(⋮\)d
=> 42n + 9 \(⋮\)d ; 42n + 10 \(⋮\)d
=> ( 42n + 10 ) - ( 42n + 9 ) \(⋮\)d
=> 1 \(⋮\)d
=> d \(\in\){ 1 ; - 1 }
=> \(\frac{14n+3}{21n+5}\)là phân số tối giản
a) Gọi d là ƯCLN(n + 1, 2n + 3), d ∈ N*
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}}\)
\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n+1,2n+3\right)=1\)
\(\Rightarrow\frac{n+1}{2n+3}\) là phân số tối giản.
b) Gọi d là ƯCLN(2n + 3, 4n + 8), d ∈ N*
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n + 3 không chia hết cho 2
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)
\(\Rightarrow\frac{2n+3}{4n+8}\) là phân số tối giản.
c) Gọi d là ƯCLN(3n + 2, 5n + 3), d ∈ N*
\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}15n+10⋮d\\15n+9⋮d\end{cases}}}\)
\(\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(3n+2,5n+3\right)=1\)
\(\Rightarrow\frac{3n+2}{5n+3}\) là phân số tối giản.
Gọi d là ƯCLN của n + 1 , 2n + 3
=> n + 1 chia hết cho d , 2n + 3 chia hết cho d
=> 2(n + 1) chia hết cho d , 2n + 3 chia hết cho d
=> 2n + 2 chia hết cho d , 2n + 3 chia hết cho d
=> 2n + 3 - 2n - 2 chia HẾT CHO d
=> 1 chia hết cho d
=> d = 1
Vậy n + 1/2n + 3 tối giản với mọi số n
b,c tương tự
gọi d là ƯCLN ( n + 2 ; 2n + 3 )
Ta có : n + 2 \(⋮\)d \(\Rightarrow\)2 . ( n + 2 ) \(⋮\)d ( 1 )
2n + 3 \(⋮\)d ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)2 . ( n + 2 ) - ( 2n + 3 )
= ( 2n + 4 ) - ( 2n + 3 ) = 1 \(⋮\)d
\(\Rightarrow\)d = 1
Mà phân số tối giản thì có ƯCLN của tử số và mẫu số bằng 1
Vậy phân số \(\frac{n+2}{2n+3}\)là phân số tối giản
để phân số là phân số tối giản điều kiên là : \(\left(n+2;2n+3\right)=1\)
Ta gọi ước chung lớn nhất của \(n+2;2n+3\)là \(d\)ta có: \(\hept{\begin{cases}n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+2\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+4⋮d\\2n+3⋮d\end{cases}}}\)
\(\Rightarrow n+4-\left(n+3\right)⋮d\Rightarrow n+4-n-3⋮d\)\(\Rightarrow1⋮d\Leftrightarrow1\)
do đó \(UCLN\left(n+2;2n+3\right)=1\)vậy phân số là phân số tối giản
Gọi d là ƯCLN của 2n + 3 và n + 1
=> \(\left\{{}\begin{matrix}2n+3⋮d\\n+1⋮d\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}2n+3⋮d\\2n+2⋮d\end{matrix}\right.\)
=> (2n + 3) - (2n + 2) ⋮ d
=> 1 ⋮ d
=> d = 1
=> ƯCLN (2n + 3; n + 1) = 1
=> \(\dfrac{2n+3}{n+1}\) là phân số tồi giản