tìm bộ ba số nguyên dương a,b,c sao cho:1/a+1/b+1/c=4/5.
Giúp mk nha.Mk cần gấp.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\)
Theo đề , ta có :
\(\Rightarrow\frac{1}{2}+\frac{3}{10}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20}=\frac{4}{5}\)
Công thức nè : \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}=\frac{1}{k+1}+\frac{a-y}{b\cdot(k+1)}\)
Mk viết tắt nha
Ta có công thức:
\(\frac{a}{b}< 1\Rightarrow\frac{a}{b}=\frac{1}{k+1}+\frac{a-r}{b\left(k-1\right)}\)với k là thương của b cho a, r là số dư của b cho a
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\)
\(\Rightarrow\frac{1}{2}+\frac{3}{10}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20}=\frac{4}{5}\)
Coppy bài nhớ ghi nguồn nhé bạn Hoàng hôn .
https://olm.vn/hoi-dap/detail/101265623759.html .
Ta có công thức: \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}=\frac{1}{k+1}+\frac{a-r}{b\left(k-1\right)}\)với k là thương của b cho a, r là số dư của phép chia của b cho a
=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\Rightarrow\frac{1}{2}+\frac{3}{10}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20}=\frac{4}{5}\)
Vậy...(làm hơi tắt, chắc bn hiểu dc)
1/a +1/b +1/c =4/5 ⇒1/2 +3/10 =1/2 +1/4 +1/20 =4/5
Vậy a=2;b=4;c=20
Ta có công thức:
\(\frac{a}{b}< a\Rightarrow\frac{a}{b}=\frac{1}{k+1}-\frac{a-r}{b\left(k-1\right)}\)
=>1/a+1/b+1/c=4/5=>1/2+3/10==1/2+1/4+1/20=4/5.
Nếu ko hiểu thì vào câu hỏi tương tự hoặc tra mạng nhé.
có phải thế này không mình cũng không hiểu cho lắm \(\frac{1}{a+\frac{1}{b+\frac{1}{c}}}\)hay là \(\frac{1}{\frac{a+1}{\frac{b+1}{c+1}}}\)
Cảm ơn lòng tốt của bạn, mình ko cần tới 3 k mỗi ngày đâu, như vậy hơi nhiều quá!.
Mình chỉ cần ko ai k sai thôi!
Ta có: \(a,b,c\inℕ^∗;\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\)
Vì \(a,b,c\)có vai trò như nhau nên giả sử \(a\le b\le c\Rightarrow\frac{1}{c}\le\frac{1}{b}\le\frac{1}{a}\Rightarrow\frac{1}{3a}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\Leftrightarrow\frac{4}{12a}\ge\frac{4}{5}\Rightarrow\Leftrightarrow12a\le5\Rightarrow a\le0\)
Điều này không đúng vì \(a>0\). Do đó: Không có 3 số tự nhiên \(a,b,c\)
nào thỏa phương trình trên (Phương trình vô nghiệm)