K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2019

DK: \(x\ge1;y\ge0\)

Ta có: \(x^2-2y^2=xy+x+y\)

<=> \(x^2-\left(y+1\right)x-2y^2-y=0\)(1)

xem (1) là phương trình ẩn x tham số y

\(\Delta=\left(y+1\right)^2-4\left(-2y^2-y\right)=9y^2+6y+1=\left(3y+1\right)^2\)

pt (1) có 2 nghiệm : \(\orbr{\begin{cases}x=\frac{y+1+3y+1}{2}=2y+1\\x=\frac{y+1-\left(3y+1\right)}{2}=-y\end{cases}}\)

+) Với x = 2y +1; thế vào pt (2) ta có: 

\(\left(2y+1\right)\sqrt{2y}-y\sqrt{2y}=3y+3\)

<=> \(\left(y+1\right)\sqrt{2y}=3\left(y+1\right)\)

<=> \(\orbr{\begin{cases}y+1=0\\\sqrt{2y}=3\end{cases}\Leftrightarrow\orbr{\begin{cases}y=-1\left(loại\right)\\y=\frac{9}{2}\end{cases}}}\)

Với  y = 9/2 => x = 10 thỏa mãn

+) Với x = - y 

Ta có: \(x\ge1\Rightarrow-y\ge1\Rightarrow y\le-1\)vô lí vì \(y\ge0\).

Vậy x = 10; y = 9/2.

2 tháng 5 2019

Từ đề\(\Leftrightarrow\hept{\begin{cases}\frac{12}{\sqrt{2x-y}}-\frac{63}{x+y}=\frac{3}{2}\\\frac{12}{\sqrt{2x-y}}+\frac{28}{x+y}-4=1\end{cases}\Rightarrow\frac{63}{x+y}+\frac{3}{2}=\frac{-28}{x+y}+4+4}\)

\(\Leftrightarrow\frac{91}{x+y}=\frac{13}{2}\Leftrightarrow x+y=14\)

\(\text{Từ đề}\Leftrightarrow\hept{\begin{cases}\frac{4}{\sqrt{2x-y}}-\frac{1}{2}=\frac{21}{x+y}\\\frac{21}{x+y}=-\frac{9}{x+y}+3+1\end{cases}}\)

thôi đến đây tự làm giống lúc nãy nha :D 

2 tháng 5 2019

:(( sửa dòng cuối

\(\frac{21}{x+y}=\frac{-9}{\sqrt{2x-y}}+4\)

11 tháng 12 2019

ĐK : \(x\ge-2;y\ge-3\)

pt (1) <=> \(x^3+x=\left(y+1\right)^3+\left(y+1\right)\)

<=> \(\left(y+1\right)^3-x^3+\left(y+1\right)-x=0\)

<=> \(\left(y+1-x\right)\left(\left(y+1\right)^2+\left(y+1\right)x+x^2+1\right)=0\)

<=> \(y+1-x=0\) vì \(\left(y+1\right)^2+\left(y+1\right)x+x^2+1>0\)dễ chứng minh.

<=> \(x=y+1\)(1')

pt (2) <=> \(\sqrt{\left(\sqrt{x+2}-2\right)^2}+\sqrt{\left(\sqrt{y+3}-3\right)^2}=1\)

<=> \(\left|\sqrt{x+2}-2\right|+\left|\sqrt{y+3}-3\right|=1\)(2')

Thế (1') vào (2') ta có: \(\left|\sqrt{y+3}-2\right|+\left|\sqrt{y+3}-3\right|=1\)

Có: \(\left|\sqrt{y+3}-2\right|+\left|\sqrt{y+3}-3\right|=\left|\sqrt{y+3}-2\right|+\left|3-\sqrt{y+3}\right|\ge1\)

Do đó: \(\left|\sqrt{y+3}-2\right|+\left|\sqrt{y+3}-3\right|=1\)<=> \(\left(\sqrt{y+3}-2\right)\left(3-\sqrt{y+3}\right)\ge0\)

<=> \(2\le\sqrt{y+3}\le3\)

<=> \(4\le y+3\le9\)

<=> \(1\le y\le6\)(tm) 

Khi đó: x = y + 1 với mọi y thỏa mãn \(1\le y\le6\)

Vậy tập nghiệm  \(S=\left\{\left(y+1;y\right):1\le y\le6\right\}\)

26 tháng 11 2023

a: Khi m=3 thì hệ phương trình sẽ là:

\(\left\{{}\begin{matrix}3x-y=2\\2x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x-3y=6\\2x+3y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}11x=11\\3x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3x-2=3-2=1\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}mx-y=2\\2x+my=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-2\\2x+m\left(mx-2\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x\left(m^2+2\right)=5+2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-2\\x=\dfrac{2m+5}{m^2+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m^2+5m}{m^2+2}-2=\dfrac{2m^2+5m-2m^2-4}{m^2+2}=\dfrac{5m-4}{m^2+2}\\x=\dfrac{2m+5}{m^2+2}\end{matrix}\right.\)

\(x+y=1-\dfrac{m^2}{m^2+2}\)

=>\(\dfrac{5m-4+2m+5}{m^2+2}=\dfrac{m^2+2-m^2}{m^2+2}=\dfrac{2}{m^2+2}\)

=>7m+1=2

=>7m=1

=>\(m=\dfrac{1}{7}\)

19 tháng 2 2016

\(\Leftrightarrow\frac{y+x}{xy}=\frac{1}{2}\)

=>\(\frac{x+y}{xy}-\frac{1}{2}=0\)

\(\Rightarrow\frac{-\left(x-2\right)y-2x}{2xy}=0\)

=>(x-2)y-2x=0

=>x-2=0( vì x-2=0 thì nhân y-2x ms =0 )

=>x=2

=>y-2=0

=>y=2

vậy x=y=2

NV
27 tháng 9 2020

\(\left(\sqrt{x^2+1}+x\right)\left(\sqrt{y^2+1}-y\right)=1\)

\(\Leftrightarrow\sqrt{x^2+1}+x=\sqrt{y^2+1}+y\) (1)

Tương tự ta có: \(\sqrt{y^2+1}-y=\sqrt{x^2+1}-x\) (2)

Cộng vế (1) và (2) \(\Rightarrow x-y=y-x\Rightarrow x=y\)

Thế xuống dưới:

\(3\sqrt{3x-2}+x\sqrt{6-x}=10\)

Đặt \(\sqrt{6-x}=a\Rightarrow\left\{{}\begin{matrix}0\le a\le\frac{4\sqrt{3}}{3}\\x=6-a^2\end{matrix}\right.\)

\(\Rightarrow a^3-6a+10-3\sqrt{16-3a^2}=0\)

\(\Leftrightarrow\left(a^3-3a-2\right)+3\left(4-a-\sqrt{16-3a^2}\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(a+1\right)^2+\frac{12a\left(a-2\right)}{4-a+\sqrt{16-a^2}}=0\)

\(\Leftrightarrow\left(a-2\right)\left[\left(a+1\right)^2+\frac{12a}{4-a+\sqrt{16-a^2}}\right]=0\)

\(\Leftrightarrow a=2\Leftrightarrow...\)