cho tam giac ABC can tai A biet AH=40m ,HC=10m Tinh BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
không pk đúng hay sai nữa do
mình mới học lớp 8 à
chúc bạn học tốt
a) Ta có: \(\widehat{HAB}+\widehat{HBA}=90^0\)
\(\widehat{HAB}+\widehat{HAC}=90^0\)
suy ra: \(\widehat{HBA}=\widehat{HAC}\)
Xét 2 tam giác vuông: \(\Delta HBA\) và \(\Delta HAC\) có:
\(\widehat{BHA}=\widehat{AHC}=90^0\)
\(\widehat{HBA}=\widehat{HAC}\) (CMT)
suy ra: \(\Delta HBA~\Delta HAC\)
b) \(BC=BH+HC=25+36=61\)cm
\(\Delta HBA~\Delta HAC\) \(\Rightarrow\)\(\frac{HB}{HA}=\frac{AB}{AC}\)
\(\Rightarrow\)\(\frac{AB}{AC}=\frac{5}{6}\)\(\Leftrightarrow\)\(\frac{AB}{5}=\frac{AC}{6}\)\(\Leftrightarrow\)\(\frac{AB^2}{25}=\frac{AC^2}{36}=\frac{AB^2+AC^2}{25+36}=\frac{BC^2}{61}=\frac{61^2}{61}=61\)
suy ra: \(\frac{AB^2}{25}=61\) \(\Leftrightarrow\) \(AB=\sqrt{1525}\) cm
\(\frac{AC^2}{36}=61\)\(\Leftrightarrow\) \(AC=\sqrt{2196}\)cm
p/s: tham khảo
a: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\)
Do đó: ΔHBA\(\sim\)ΔHAC
b: \(BC=HB+HC=61\left(cm\right)\)
\(AB=\sqrt{25\cdot61}=5\sqrt{61}\left(cm\right)\)
\(AC=\sqrt{36\cdot61}=6\sqrt{61}\left(cm\right)\)
Cho tam giac ABC vuong tai A va đuong cao AH .Biet AB=15,HC=16.tinh chu vi va dien tich tam giac ABC
Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+16\right)=15^2=225\)
\(\Leftrightarrow BH^2+25HB-9HB-225=0\)
=>HB=9(cm)
BC=BH+CH=25(cm)
\(AC=\sqrt{16\cdot25}=20\left(cm\right)\)
C=AB+BC+AC=15+20+25=60(cm)
\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{15\cdot20}{2}=15\cdot10=150\left(cm^2\right)\)