K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2021

Bài 2:

a) \(3x^2-7x-10=\left(x+1\right)\left(3x-10\right)\)

b) \(x^2+6x+9-4y^2=\left(x+3\right)^2-\left(2y\right)^2=\left(x+3-2y\right)\left(x+3+2y\right)\)

c) \(x^2-2xy+y^2-5x+5y=\left(x-y\right)^2-5\left(x-y\right)=\left(x-y\right)\left(x-y-5\right)\)

d) \(4x^2-y^2-6x+3y=\left(2x-y\right)\left(2x+y\right)-3\left(2x-y\right)=\left(2x-y\right)\left(2x+y-3\right)\)

e) \(1-2a+2bc+a^2-b^2-c^2=\left(a-1\right)^2-\left(b-c\right)^2=\left(a-1-b+c\right)\left(a-1+b-c\right)\)

f) \(x^3-3x^2-4x+12=\left(x+2\right)\left(x-3\right)\left(x-2\right)\)

g) \(x^4+64=\left(x^2+8\right)^2-16x^2=\left(x^2+8-4x\right)\left(x^2+6+4x\right)\)h) \(x^4-5x^2+4=\left(x+2\right)\left(x+1\right)\left(x-1\right)\left(x-2\right)\)

i) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+16=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+16=\left(x^2+8x+7\right)^2+8\left(x^2+8x+7\right)+16=\left(x^2+8x+11\right)^2\)

 

a: \(3x^2-7x-10\)

\(=3x^2+3x-10x-10\)

\(=\left(x+1\right)\left(3x-10\right)\)

b: \(x^2+6x+9-4y^2\)

\(=\left(x+3\right)^2-4y^2\)

\(=\left(x+3-2y\right)\left(x+3+2y\right)\)

c: \(x^2-2xy+y^2-5x+5y\)

\(=\left(x-y\right)^2-5\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-5\right)\)

a: P(x)=6x^3-4x^2+4x-2

Q(x)=-5x^3-10x^2+6x+11

M(x)=x^3-14x^2+10x+9

b: \(C\left(x\right)=7x^4-4x^3-6x+9+3x^4-7x^3-5x^2-9x+12\)

=10x^4-11x^3-5x^2-15x+21

 

18 tháng 5 2022

Đáp án: B

11 tháng 11 2021

ở oooo

11 tháng 11 2021

hihi

21 tháng 6 2023

\(a,x^2=5\Leftrightarrow x=\pm\sqrt{5}\)

Vậy \(S=\left\{\pm\sqrt{5}\right\}\)

\(b,3x^2-12=0\Leftrightarrow3x^2=12\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)

Vậy \(S=\left\{\pm2\right\}\)

\(c,4x^2-3=-9\)

\(\Leftrightarrow4x^2=-6\)

\(\Leftrightarrow x^2=-\dfrac{3}{2}\) (loại)

Vậy pt vô nghiệm.

\(d,5x^2-3=-3\)

\(\Leftrightarrow5x^2=0\)

\(\Leftrightarrow x=0\)

Vậy \(S=\left\{0\right\}\)

21 tháng 6 2023

a)

`x^2 =5`
`=>\(\left[{}\begin{matrix}x=\sqrt{5}\\x=-\sqrt{5}\end{matrix}\right.\)

b)

`3x^2 -12=0`

`<=>3x^2 =12`

`<=>x^2 =4`

\(< =>\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

c)

`4x^2 -3=-9`

`<=>4x^2 =-6`

`<=>x^2 =-3/2` (vô lí vì `x>=0AA x` )

d)

`5x^2 -3=3`

`<=>5x^2 =0`

`<=>x^2 =0`

`<=>x=0`

3 tháng 10 2021

\(a,\Rightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1-3x^2=54\\ \Rightarrow26x=26\Rightarrow x=1\\ b,\Rightarrow x^3-9x^2+27x-27-x^3+27+6x^2+12x+6+3x^2=-33\\ \Rightarrow39x=-39\Rightarrow x=-1\)

b) \(\left(4x^2+4xy+y^2\right):\left(2x+y\right)=\dfrac{\left(2x+y\right)^2}{2x+y}=2x+y\)

c) \(\left(x^2-6xy+9y^2\right):\left(3y-x\right)=\dfrac{\left(3y-x\right)^2}{3y-x}=3y-x\)

Bài 1: Thực hiện phép tính:          a) 2x.(3x2 – 5x + 3)                                 b) (-2x-1).( x2 + 5x – 3 ) – (x-1)3c) (2x – y).(4x2 + 2xy + y2)            d) (6x5y2 – 9x4y3 + 15x3y4) : 3x3y2     e) (x3 – 3x2 + x – 3) : (x – 3)Bài 2: Tìm x, biết:a) 5x(x – 1) = 10 (x – 1);                    b) 2(x + 5) – x2 – 5x = 0;        c) x3 - x =...
Đọc tiếp

Bài 1: Thực hiện phép tính:

          a) 2x.(3x2 – 5x + 3)                                 b) (-2x-1).( x2 + 5x – 3 ) – (x-1)3

c) (2x – y).(4x2 + 2xy + y2)            d) (6x5y2 – 9x4y3 + 15x3y4) : 3x3y2     

e) (x3 – 3x2 + x – 3) : (x – 3)

Bài 2: Tìm x, biết:

a) 5x(x – 1) = 10 (x – 1);                    b) 2(x + 5) – x2 – 5x = 0;        

c) x3 - x = 0;                                               d) (2x – 1)2 – (4x – 3)2 = 0               

e) (5x + 3)(x – 4) – (x – 5)x = (2x – 5)(5+2x )

Bài 3: Chứng minh rằng giá trị của biểu thức không phụ thuộc vào giá trị của biến.

a) x(3x + 12) – (7x – 20) + x2(2x – 3) – x(2x2 + 5).

b) 3(2x – 1) – 5(x – 3) + 6(3x – 4) – 19x.

Bài 4: Phân tích đa thức thành nhân tử.

          a) 10x(x – y) – 8(y – x)                      b) (3x + 1)2 – (2x + 1)2  

c) - 5x2 + 10xy – 5y2 + 20z2                   d) 4x2 – 4x +4 – y2                              

e) 2x2 - 9xy – 5y2                                             f) x3 – 4x2 + 4 x – xy2

Bài 5: Tìm giá trị nhỏ nhất của biểu thức

a) A = 9x2 – 6x + 11          b) B = 4x2 – 20x + 101 

Bài 6: Tìm giá trị lớn nhất của biểu thức   

                   a) A = x – x2                  b) B = – x2 + 6x – 11

1
22 tháng 8 2022

a) 2x.(3x2 – 5x + 3)        

=2x3-10x2+6x                                                                       

b(-2x-1).( x2 + 5x – 3 ) – (x-1)3

=-2x- 10x2 + 6x - x2 - 5x + 3 - x3 + 3x2 - 3x + 1

= -3x3 - 8x2 - 2x + 4

   d) (6x5y2 – 9x4y+ 15x3y4) : 3x3y

=2x2-3xy+5y2

 

 

 

27 tháng 12 2021

1: \(=x^2+1\)

3: \(=\left(x-y-z\right)^2\)

NV
26 tháng 7 2021

1.

Đặt \(x-2=t\ne0\Rightarrow x=t+2\)

\(B=\dfrac{4\left(t+2\right)^2-6\left(t+2\right)+1}{t^2}=\dfrac{4t^2+10t+5}{t^2}=\dfrac{5}{t^2}+\dfrac{2}{t}+4=5\left(\dfrac{1}{t}+\dfrac{1}{5}\right)^2+\dfrac{19}{5}\ge\dfrac{19}{5}\)

\(B_{min}=\dfrac{19}{5}\) khi \(t=-5\) hay \(x=-3\)

2.

Đặt \(x-1=t\ne0\Rightarrow x=t+1\)

\(C=\dfrac{\left(t+1\right)^2+4\left(t+1\right)-14}{t^2}=\dfrac{t^2+6t-9}{t^2}=-\dfrac{9}{t^2}+\dfrac{6}{t}+1=-\left(\dfrac{3}{t}-1\right)^2+2\le2\)

\(C_{max}=2\) khi \(t=3\) hay \(x=4\)