K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 3 2019

Đề sai, đề đúng phải là \(VT< \frac{1}{20}\)

Dễ dàng chứng minh đề sai, ta có:

\(\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2006}}>\frac{1}{5^2}+\frac{1}{5^3}=\frac{6}{125}>\frac{1}{24}\)

Còn chứng minh \(VT< \frac{1}{20}\) thì như sau:

\(A=\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2006}}\)

\(\Rightarrow5A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2005}}\)

\(\Rightarrow5A-\frac{1}{5}+\frac{1}{5^{2006}}=\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2006}}\)

\(\Rightarrow5A-\frac{1}{5}+\frac{1}{5^{2006}}=A\)

\(\Rightarrow4A=\frac{1}{5}-\frac{1}{5^{2006}}< \frac{1}{5}\)

\(\Rightarrow A< \frac{1}{20}\)

10 tháng 3 2019

Mơn cậu nha!!

31 tháng 3 2020

\(\frac{1}{5}< \frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{3}\)

+) Chứng minh: \(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{3}\)

Có: \(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)

\(< \frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{3}-\frac{1}{100}< \frac{1}{3}\)

+) Chứng minh \(\frac{1}{5}< \frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)

\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)

\(>\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{100.101}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{100}-\frac{1}{101}\)

\(=\frac{1}{4}-\frac{1}{101}=\frac{1}{5}+\frac{1}{20}-\frac{1}{101}>\frac{1}{5}\)

\(\frac{1}{5}< \frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{3}\)

Trước hết ta phải chứng minh \(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{3}\)

Ta có \(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)\(< \frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{3}-\frac{1}{100}< \frac{1}{3}\)

Sau đó chứng minh \(\frac{1}{5}< \frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)

\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)\(>\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{100.101}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{100}-\frac{1}{101}\)

\(=\frac{1}{4}-\frac{1}{101}=\frac{1}{5}+\frac{1}{20}-\frac{1}{101}>\frac{1}{5}\)

Vậy .................

21 tháng 3 2020

Cô chữa chưa bạn >>>

Cho mk xin lời giải đk ko ?

                                 Giúp vs.. Mơn nhìu lắm!!!

22 tháng 1 2020

\(A=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^5}+...+\frac{2020}{5^{2020}}\)

\(\Rightarrow5A=1+\frac{2}{5}+\frac{3}{5^2}+\frac{4}{5^3}+...+\frac{2020}{5^{2019}}\)

\(\Rightarrow5A-A=4A=1+\left(\frac{2}{5}-\frac{1}{5}\right)+\left(\frac{3}{5^2}-\frac{2}{5^2}\right)+...+\left(\frac{2020}{5^{2019}}-\frac{2019}{5^{2019}}\right)-\frac{2020}{5^{2020}}\)

\(\Leftrightarrow4A=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2019}}-\frac{2020}{5^{2020}}\)

\(B=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2019}}\)

\(\Rightarrow5B=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2019}}\)

\(\Rightarrow4B=1-\frac{1}{5^{2019}}\)

\(\Rightarrow B=\frac{1}{4}-\frac{1}{4.5^{2019}}\)

\(\Rightarrow4A=1+B-\frac{2020}{5^{2020}}\)

\(\Rightarrow A=\frac{5}{16}-\frac{1}{5^{2019}}\left(\frac{1}{4}+\frac{2020}{5}\right)=\frac{5}{16}-\frac{1617}{4.5^{2019}}\)

\(16>\frac{1617}{4.5^{2019}}\Rightarrow A=\frac{1}{4}+\left(\frac{1}{16}-\frac{1617}{4.5^{2019}}\right)>\frac{1}{4}\)

\(\frac{5}{16}< \frac{1}{3}\Rightarrow A< \frac{1}{3}\)

\(\Rightarrow\frac{1}{4}< A< \frac{1}{3}\left(Đpcm\right)\)

27 tháng 7 2015

OK. Tối nhớ giải hộ mik nha

Mik hứa sẽ lik-e cho bạn

 

26 tháng 2 2017

mình ko biết