Cho a,b,c là số thực không âm thỏa mãn a+b+c=1 . Chứng minh rằng 2a+b+c\(\ge\) 4(a+b)(b+c)(c+a)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x=a+b;y=b+c,z=c+a\)
\(\Rightarrow x+y+z=2\)
Ta cần chứng minh:\(x+z\ge4xyz\)
Ta có:\(4\left(x+z\right)=\left(x+y+z\right)^2\left(x+z\right)\ge4y\left(x+z\right)\left(x+z\right)\)
\(=4y\left(x+z\right)^2\ge4y.4xz=16xyz\)
\(\Rightarrow\)\(x+z\ge4xyz\)
Hoàn tất chứng minh.Dấu "=" xảy ra khi \(x=z=\frac{1}{2};y=1\) thế vào tìm a,b,c
a.
Bình phương 2 vế, BĐT cần chứng minh trở thành:
\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)}+\sqrt{\left(b^2+1\right)\left(c^2+1\right)}+\sqrt{\left(c^2+1\right)\left(a^2+1\right)}\ge6\)
Ta có:
\(\sqrt{\left(a^2+1\right)\left(1+b^2\right)}\ge\sqrt{\left(a+b\right)^2}=a+b\)
Tương tự cộng lại:
\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)}+\sqrt{\left(b^2+1\right)\left(c^2+1\right)}+\sqrt{\left(c^2+1\right)\left(a^2+1\right)}\ge2\left(a+b+c\right)=6\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
b.
\(\sum\dfrac{a+1}{a^2+2a+3}=\sum\dfrac{a+1}{a^2+1+2a+2}\le\sum\dfrac{a+1}{4a+2}\)
Nên ta chỉ cần chứng minh:
\(\sum\dfrac{a+1}{4a+2}\le1\Leftrightarrow\sum\dfrac{4a+4}{4a+2}\le4\)
\(\Leftrightarrow\sum\dfrac{1}{2a+1}\ge1\)
Đúng đo: \(\dfrac{1}{2a+1}+\dfrac{1}{2b+1}+\dfrac{1}{2c+1}\ge\dfrac{9}{2\left(a+b+c\right)+3}=1\)
Đặt
x=a+b , y=b+c , z=c+a
=> x+y+z=2
Ta cần chứng minh x+z > 4xyz
Ta có
4(x+z)=(x+y+z)2
(x+z) > 4y.4xz=16xyz
= 4y(x+z)2 > 4y.4xz= 16xyz
=>x+z > 4xyz
Hoàn tất chứng minh . Dấu "=" xảy ra khi x=z=1/2:y=1 thế vào tìm a,b,c.
Chúc bn hok tốt
Giả sử \(c\le1\).
Khi đó: \(ab+bc+ca-abc=ab\left(1-c\right)+c\left(a+b\right)\ge0\)
\(\Rightarrow ab+bc+ca\ge abc\left(1\right)\)
Đẳng thức xảy ra chẳng hạn với \(a=2,b=c=0\).
Theo giả thiết:
\(4=a^2+b^2+c^2+abc\ge2ab+c^2+abc\)
\(\Leftrightarrow ab\left(c+2\right)\le4-c^2\)
\(\Leftrightarrow ab\le2-c\)
Trong ba số \(\left(a-1\right),\left(b-1\right),\left(c-1\right)\) luôn có hai số cùng dấu.
Không mất tính tổng quát, giả sử \(\left(a-1\right)\left(b-1\right)\ge0\).
\(\Rightarrow ab-a-b+1\ge0\)
\(\Leftrightarrow ab\ge a+b-1\)
\(\Leftrightarrow abc\ge ca+bc-c\)
\(\Rightarrow abc+2\ge ca+bc+2-c\ge ab+bc+ca\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow\) Bất đẳng thức được chứng minh.
Xét \(VT=a+2b+c=1+b\left(1\right)\)
Áp dụng BĐT AG-GM:
\(4\left(1-a\right)\left(1-c\right)\le\left(1-a+1-c\right)^2=\left(2-a-c\right)^2=\left(1+a+b+c-a-c\right)^2=\left(1+b\right)^2\left(2\right)\)
\(\Rightarrow4\left(1-a\right)\left(1-b\right)\left(1-c\right)\le\left(1-b\right)\left(1+b\right)^2\)
Mà \(\left(1-b\right)\left(1+b\right)^2-\left(1-b\right)=\left(1+b\right)\left(1-b^2-1\right)=-b^2\left(1+b\right)\le0,\forall b\ge0\)
Do đó \(\left(1-b\right)\left(1+b\right)^2\le1+b\left(3\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\) ta có ĐPCM
Dấu "=" \(\Leftrightarrow a=c=\dfrac{1}{2};b=0\)
Vì a, b, c không âm và có tổng bằng 1 nên 0 ≤ a , b , c ≤ 1 ⇒ a ( 1 − a ) ≥ 0 b ( 1 − b ) ≥ 0 c ( 1 − c ) ≥ 0 ⇒ a ≥ a 2 b ≥ b 2 c ≥ c 2 ⇒ 5 a + 4 ≥ a 2 + 4 a + 4 = ( a + 2 ) 2 = a + 2 T ư ơ n g t ự : 5 b + 4 ≥ b + 2 ; 5 c + 4 ≥ c + 2 ⇒ 5 a + 4 + 5 b + 4 + 5 c + 4 ≥ ( a + b + c ) + 6 = 7 ( đ p c m )
Ta có: \(\frac{a}{1+b^2}=\frac{a+ab^2-ab^2}{1+b^2}=\frac{a+ab^2}{1+b^2}-\frac{ab^2}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Tương tự ta có: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\); \(\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)
Cộng theo vế 3 BĐT trên,ta được: \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge3-\frac{1}{2}\left(ab+bc+ca\right)\)
Do \(ab+bc+ca\ge\frac{\left(a+b+c\right)^2}{3}\) (dấu "=" xảy ra khi a = b = c) nên ta có:)
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge3-\frac{1}{2}\left(ab+bc+ca\right)\ge3-\frac{1}{2}.\frac{\left(a+b+c\right)^2}{3}=\frac{3}{2}^{\left(đpcm\right)}\)
Lời giải:
Áp dụng BĐT Cauchy (dạng \(xy\leq \left(\frac{x+y}{2}\right)^2\) ) ta có:
\(4(a+b)(c+a)\leq (a+b+c+a)^2=(2a+b+c)^2\)
\(\Rightarrow 4(a+b)(b+c)(c+a)\leq (b+c)(2a+b+c)^2(*)\)
Mà:
\((b+c)(2a+b+c)\leq \left(\frac{b+c+2a+b+c}{2}\right)^2=(a+b+c)^2=1\)
\(\Rightarrow (b+c)(2a+b+c)^2\leq 1.(2a+b+c)=2a+b+c(**)\)
Từ \((*); (**)\Rightarrow 4(a+b)(b+c)(c+a)\leq 2a+b+c\) (đpcm)
Dấu "=" xảy ra khi \((a,b,c)=(0,0.5,0.5)\)