Tìm các số tự nhiên x,y thỏa mãn :2014^x+80=3^y
Cho A=1+1/2+1/3+1/4+...........+1/62+1/63.So sánh A với 6.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(5=3xy+x+y\ge3xy+2\sqrt{xy}\)
\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(3\sqrt{xy}+5\right)\le0\Rightarrow xy\le1\)
\(P=\dfrac{\left(x+1\right)\left(x^2+1\right)+\left(y+1\right)\left(y^2+1\right)}{\left(x^2+1\right)\left(y^2+1\right)}-\sqrt{9-5xy}\)
\(P=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^2-2xy+x+y+2}{x^2y^2+\left(x+y\right)^2-2xy+1}-\sqrt{9-5xy}\)
Đặt \(xy=a\Rightarrow0< a\le1\)
\(P=\dfrac{\left(5-3a\right)^3-3a\left(5-3a\right)+\left(5-3a\right)^2-2a+5-3a+2}{a^2+\left(5-3a\right)^2-2a+1}-\sqrt{9-5a}\)
\(P=\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{2}.2\sqrt{9-5a}\)
\(P\ge\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{4}\left(4+9-5a\right)\)
\(P\ge\dfrac{-29a^3+161a^2-277a+145}{4\left(5a^2-16a+13\right)}=\dfrac{\left(1-a\right)\left(29a^2-132a+145\right)}{4\left(5a^2-16a+13\right)}\)
\(P\ge\dfrac{\left(1-a\right)\left[29a^2+132\left(1-a\right)+13\right]}{4\left(5a^2-16a+13\right)}\ge0\)
\(P_{min}=0\) khi \(a=1\) hay \(x=y=1\)
Hai phân thức của P rất khó làm gọn bằng AM-GM hoặc Cauchy-Schwarz (nó hơi chặt)
2.
Đặt \(A=9^n+62\)
Do \(9^n⋮3\) với mọi \(n\in Z^+\) và 62 ko chia hết cho 3 nên \(A⋮̸3\)
Mặt khác tích của k số lẻ liên tiếp sẽ luôn chia hết cho 3 nếu \(k\ge3\)
\(\Rightarrow\) Bài toán thỏa mãn khi và chỉ khi \(k=2\)
Do tích của 2 số lẻ liên tiếp đều không chia hết cho 3, gọi 2 số đó lần lượt là \(6m-1\) và \(6m+1\)
\(\Leftrightarrow\left(6m-1\right)\left(6m+1\right)=9^n+62\)
\(\Leftrightarrow36m^2=9^n+63\)
\(\Leftrightarrow4m^2=9^{n-1}+7\)
\(\Leftrightarrow\left(2m\right)^2-\left(3^{n-1}\right)^2=7\)
\(\Leftrightarrow\left(2m-3^{n-1}\right)\left(2m+3^{n-1}\right)=7\)
Pt ước số cơ bản, bạn tự giải tiếp
ta có:\(A=\frac{8^9+12}{8^9+7}=\frac{8^9+7+5}{8^9+7}=\frac{8^9+7}{8^9+7}+\frac{5}{8^9+7}=1+\frac{5}{8^9+7}\)
\(B=\frac{8^{10}+4}{8^{10}-1}=\frac{8^{10}-1+5}{8^{10}-1}=\frac{8^{10}-1}{8^{10}-1}+\frac{5}{8^{10}-1}=1+\frac{5}{8^{10}-1}\)
vì 810-1>89+7
\(\Rightarrow\frac{5}{8^{10}-1}<\frac{5}{8^9+7}\)
\(\Rightarrow1+\frac{5}{8^{10}-1}<1+\frac{5}{8^9+7}\)
=>A<B
\(\frac{1}{x}+\frac{y}{3}=\frac{1}{6}\)
=> \(\frac{1}{x}=\frac{1}{6}-\frac{y}{3}\)
=> \(\frac{1}{x}=\frac{1-2y}{6}\)
=> \(x\left(1-2y\right)=6\)
=> \(x;1-2y\inƯ\left(6\right)=\left\{1;2;3;6\right\}\)
Vì \(y\in N\Rightarrow1-2y\in\left\{1;3\right\}\)
\(\Rightarrow x\in\left\{2;6\right\}\)
Lập bảng :
1 - 2y | 1 | 3 |
x | 6 | 2 |
y | 0 | -1 (loại) |
Vậy ...
\(\frac{3}{4}-2.\left|2x-\frac{2}{3}\right|=\frac{1}{2}\)
\(\Rightarrow2.\left|2x-\frac{2}{3}\right|=\frac{3}{4}-\frac{1}{2}\)
\(\Rightarrow2.\left|2x-\frac{2}{3}\right|=\frac{1}{4}\)
\(\Rightarrow\left|2x-\frac{2}{3}\right|=\frac{1}{4}:2\)
\(\Rightarrow\left|2x-\frac{2}{3}\right|=\frac{1}{8}\)
\(\Rightarrow\orbr{\begin{cases}2x-\frac{2}{3}=\frac{1}{8}\\2x-\frac{2}{3}=\frac{-1}{8}\end{cases}\Rightarrow}\orbr{\begin{cases}2x=\frac{1}{8}+\frac{2}{3}\\2x=\frac{-1}{8}+\frac{2}{3}\end{cases}\Rightarrow\orbr{\begin{cases}2x=\frac{19}{24}\\2x=\frac{13}{24}\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{19}{24}:2\\x=\frac{13}{24}:2\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{19}{48}\\x=\frac{13}{48}\end{cases}}\)
Vậy ...................................
~ Hok tốt ~
a/ \(2014^x+80=3^y\)
- Với \(x=0\Rightarrow2014^0+80+3^y\Leftrightarrow81=3^y\Leftrightarrow3^4=3^y\Rightarrow y=4\)
- Với \(x>0\) ta có \(2014\) chẵn \(\Rightarrow2014^x\) chẵn, lại có \(80\) chẵn \(\Rightarrow\) vế trái là một số chẵn
Mà \(3^y\) luôn lẻ với mọi \(y\in N\Rightarrow\) vế phải là số lẻ
Vế trái chẵn, vế phải lẻ \(\Rightarrow\) vô nghiệm
Vậy \(\left\{{}\begin{matrix}x=0\\y=4\end{matrix}\right.\) là cặp nghiệm tự nhiên duy nhất
b/
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}\)
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{8}+...+\frac{1}{16}+...+\frac{1}{32}+...+\frac{1}{63}\)
\(A< 1+2.\frac{1}{2}+4.\frac{1}{4}+8.\frac{1}{8}+16.\frac{1}{16}+32.\frac{1}{32}\)
\(A< 1+1+1+1+1+1=6\) (đpcm)