K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2019

a, xét tam giác abc vuông tại h

theo đlí Pitago co

\(bc=\sqrt{ab^2+ac^2}=\sqrt{6^2+8^2}=\sqrt{36+64}=\sqrt{100}=10\left(cm\right)\)

vậy bc=10cm

b,xét tam giác abcvà tam giác hab có

góc bac= góc bha= 90 độ(gt)

góc b chung

=>tam giác abc đồng dạng vs tam giác hba(gg)

c,từ cmb có tam giác abc đồng dạng vs tam giác hba

=>\(\frac{ab}{bh}=\frac{bc}{ab}\Rightarrow ab.ab=bh.bc\Rightarrow ab^2=bh.bc\)

21 tháng 4 2020

a) Dựa vào định lý Pytago , ta tính được BC = 10 cm

b)  tam giác  HBA đồng dạng với tam giác ABC theo trường hợp g.g

c) từ hai tam giác đồng dạng nêu trên

=>\(\frac{BH}{AB}=\frac{AB}{BC}\)

=>\(AB^2=BH.BC\left(đpcm\right)\)

 ta tính được BH= 3.6 cm

17 tháng 4 2022

a. áp dụng định lý py-ta-go vào tam giác ABC, ta có:

AB2+AC2=BC2

62+82= BC2

36+64= BC2

BC2=100

BC= 10 (cm)

b. bạn thiếu đề rồi ạ.

8 tháng 4 2022

a ΔABC vuông ở A

⇒Góc A= 90 độ

Áp dụng định lý Pitago vào ΔABC:

BC²=AB²+AC²

BC²=6²+8²

BC²=100

⇒BC=10 cm

b AB/HB=BC/BA 

=> AB2=HB×BC

 ⇒HB=AB²/BC

⇒HB=6²/10=3,6(cm)

Tương tự: AC²=HC×BC

⇒HC=AC²/BC

⇒HC=8²/10=6,4(cm)

Vậy BH=3,6 cm và HC=6,4 cm

11 tháng 3 2022

BẠN CÓ THỂ TRA THAY VÌ HỎI ĐC KO

 

11 tháng 3 2022

nhưng mà web này để hỏi mè =)))

a: BC=10cm

Xet ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạngvới ΔHBA

b: AH=6*8/10=4,8cm

BH=6^2/10=3,6cm

CH=10-3,6=6,4cm

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

b) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{HBA}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=100\)

hay BC=10cm

Xét ΔABC có BD là đường phân giác ứng với cạnh AC

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)

hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)

mà AD+CD=8

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó: AD=3cm; CD=5cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

Suy ra: \(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)

hay \(AB^2=BH\cdot BC\)

19 tháng 8 2021

c) Ta có: \(\widehat{ABD}=\widehat{DBC}\)( BD là phân giác )\(\Rightarrow90^0-\widehat{ABD}=90^0-\widehat{DBC}\Rightarrow\widehat{BIH}=\widehat{ADI}\Rightarrow\widehat{AID}=\widehat{ADI}\Rightarrow\Delta ADI\) cân tại A\(\Rightarrow AI=AD\Rightarrow\dfrac{AB}{AI}=\dfrac{AB}{AD}\)

Xét Δ ABI và Δ CBD có:

\(\widehat{BAI}=\widehat{BCD}\left(\Delta ABC\sim\Delta HBA\right)\)

\(\dfrac{AB}{AI}=\dfrac{BC}{CD}\left(=\dfrac{AB}{AD}\right)\)

\(\Rightarrow\Delta ABI\sim\Delta CBD\left(c.g.c\right)\)

d) Xét ΔABH có:

BI là tia phân giác của \(\widehat{ABH}\)

\(\Rightarrow\dfrac{IH}{IA}=\dfrac{BH}{AB}\left(1\right)\)( tính chất tia phân giác)

Xét ΔABC có:

BD là tia phân giác của \(\widehat{ABC}\)

\(\Rightarrow\dfrac{AD}{DC}=\dfrac{AB}{BC}\left(2\right)\)( tính chất tia phân giác)

Ta có: \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\left(\Delta ABC\sim\Delta HBA\right)\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow\dfrac{IH}{IA}=\dfrac{AD}{DC}\left(đpcm\right)\)

 

 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔHBA\(\sim\)ΔABC

Xét ΔHBA vuông tại H và ΔHAC vuông tại H có 

\(\widehat{HBA}=\widehat{HAC}\)

Do đó: ΔHBA\(\sim\)ΔHAC

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\)(hệ thức lượng)

c: \(AB=\sqrt{BC^2-AC^2}=12\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)

\(BH=\sqrt{AB^2-AH^2}=7.2\left(cm\right)\)

1: BC=10cm

Xét ΔABC có BD là đường phân giác

nên AD/AB=DC/BC

=>AD/6=DC/10

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó: AD=3(cm); BD=5(cm)

2: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{B}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

Xét ΔABI và ΔCBD có

\(\widehat{ABI}=\widehat{CBD}\)

\(\widehat{IAB}=\widehat{DCB}\)

Do đó: ΔABI\(\sim\)ΔCBD